ALGOL 48 AND ALGOL 50—ALGOLIC LANGUAGES IN MATHE-
MATICS

Abstract

This article describes how to express programs with assignment
statements and conditional go tos in mathematical logic without any
programming constructs used in Fortran and Algol. The names come
from imagining mathematicians devising a programming language in
1948 and elaborating it in 1950. There are just two innovations—
regarding the values of variables as functions, of a natural number
valued time, e.g. x(t) instead of a program variable z, and regarding
a program counter pc(t) as just another variable.

This way of writing programs has a number of advantages. One is
that statements and proofs of correctness are just ordinary proofs in
the domain of variables supplemented by Peano arithmetic.

We introduce the “programming languages” Algol 48 and Algol 50 to
illustrate in a simpler setting some ideas to be used in Elephant 2000. These
are the explicit use of time in a programming language and the representation
of the program by logical sentences. The former permits a direct expression
of the operational semantics of the language, and the latter permits proofs
of properties of programs without any special theory of programming. The
properties are deduced from the program itself together with axioms for the
domain.

We use these names, because the languages cover some of the ground of
Algol 60 but use only a mathematical formalism— old fashioned recursion
equations—that precedes the development of programming languages. They
are programming languages I imagine mathematicians might have created
in 1950 had they seen the need for something other than machine language.
Algol 48 is a preliminary version of Algol 50 just as Algol 58 was a preliminary
version of Algol 60.

Consider the Algol 60 fragment.



0 start : p:=0;

1 1:=n;

2 loop : if i = 0 then go to done;
3 D i=p+m;

4 1:=1— 1,

5 go to loop;

6

done :

The program computes the product mn by initializing a partial product p
to 0 and then adding m to it n times. The correctness of the Algol 60 program
is represented by the statement that if the program is entered at start it will
reach the label done, and when it does, the variable p will have the value mn.
Different program verification formalisms represent this assertion in various
ways, often not entirely formal.

Its partial correctness is conventionally proved by attaching the invariant
assertion p = m(n — 7) to the label loop. Its termination is proved by noting
that the variable ¢ starts out with the value n and counts down to 0. This
proof is expressed in various ways in the different formalisms for verifying
programs.

0.1 Algol 48

In Algol 48 we write this algorithm as a set of old fashioned recursion equa-
tions for three functions of time, namely p(t), i(t) and pc(t), where the first
two correspond to the variables in the program, and pc(t) tells how the “pro-
gram counter” changes. The only ideas that would have been unconventional
in 1948 are the explicit use of a program counter and the conditional expres-
sions. We have

p(t+1) = if pc(t) =0 then 0
else if pc(t) = 3 then p(t) +m
else p(t),

i(t+1)= if pc(t) =1 then n
else if pc(t) =4 then i(t) — 1
else i(t),

and



pe(t+1) = if pe(t) =2 A i(t) = 0 then 6
else if pc(t) =5 then 2
else pc(t) + 1.

The correctness of the Algol 48 program is represented by the sentence
Vm n(n >0 — Vi(pe(t) =0 — Jt'({t' >t Apc(t') =6 Ap(t') = mn)))

This sentence may be proved from the sentences representing the pro-
gram supplemented by the axioms of arithmetic and the axiom schema of
mathematical induction. No special theory of programming is required. The
easiest proof uses mathematical induction on n applied to a formula involving
p(t) = m(n —i(t)).

Algol 48 programs are organized quite differently from Algol 60 programs.
Namely, the changes to variables are sorted by variable rather than sequen-
tially by time.

0.2 Algol 50

However, by reifying variables, Algol 50 permits writing programs in a way
that permits regarding programs in this fragment of Algol 60 as just sugared
versions of Algol 50 programs.

Instead of writing var(t) for some variable var, we write value(var, £(t)),
where ¢ is a state vector giving the values of all the variables. In the above
program, we'll have value(p, £(t)), value(i,&(t)) and value(pe, &(t)).

The variables of the Algol 60 program correspond to functions of time in
the above first Algol 50 version and become distinct constant symbols in the
version of Algol 50 with reified variables. Their distinctness is made explicit
by the “unique names” axiom

i #pNi#pcAp# pe.

In expressing the program we use the assignment and contents func-
tions, a(var,value, §) and c(var,§), of (McCarthy 1963) and (McCarthy and
Painter 1967). a(var,value, &) is the new state &’ that results when the vari-
able var is assigned the value value in state £. c(var, ) is the value of var
in state €.



As described in those papers the functions a and c satisfy the axioms.
c(var, a(var,val,§)) = val,

varl # var2 — c(var2, a(varl,val,§)) = c(var2,§),
a(var,val2, a(var,vall, §)) = a(var,val2,§),

and
varl # var2 — a(var2,val2, a(varl,vall, §)) = a(varl,vall, a(var2,val2,§)).

The following function definitions shorten the expression of programs.
Note that they are just function definitions and not special constructs.

step(§) = a(pe, value(pc, §) +1,€),
goto(label, &) = a(pc, label, §).

We make the further abbreviation loop = start + 2 specially for this
program, and with this notation our program becomes

Vi (E(t+1) =
if c(pc,&(t)) = start
then step a(p,0,&(t))
else if c(pc,&(t)) = start + 1
then step a(i,n,{(t))
else if c(pc,&(t)) = loop
then (if ¢(i,£(t)) = 0 then
goto(done, £(t))
else step £(1))
else if c(pc,&(t)) = loop + 1
then step a(p,c(p,&(t)) +m, &(t))
else if c(pc,&(t)) = loop + 2
then step a(i, c(i,£(t)) — 1,&(t))
else if c(pc,&(t)) = loop + 3
then goto(loop, £(t))
else {(t+ 1))

In Algol 50, the consequents of the clauses of the conditional expression
are in 1-1 correspondence with the statements of the corresponding Algol 60



program. Therefore, the Algol 60 program can be regarded as an abbrevi-
ation of the corresponding Algol 50 program. The (operational) semantics
of the Algol 60 program is then given by the sentence expressing the cor-
responding Algol 50 program together with the axioms describing the data
domain, which in this case would be the Peano axioms for natural numbers.
The transformation to go from Algol 60 to Algol 50 would be entirely lo-
cal, i.e. statement by statement, were it not for the need to use statement
numbers explicitly in Algol 50.

Program fragments can be combined into larger fragments by taking the
conjunction of the sentences representing them, identifying labels where this
is wanted to achieve a go to from one fragment to another and adding
sentences to make sure that the program counter ranges don’t overlap.

The correctness of the Algol 50 program for multiplication by addition is
expressed by

Vit&o(e(pe, &(t)) = start  NE(t) = &o
— ' >t Ac(p,E(t) =mn
Nce(pe, E(t')) = done
AYvar(—(var € {p,i,pc}) — c(var,&(t')) = c(var,&y))))

Note that we quantify over all initial state vectors. The last part of the
correctness formula states that the program fragment doesn’t alter the state
vector other than by altering p, ¢ and pc.

We have not carried the Algol 50 idea far enough to verify that all of
Algol 60 is conveniently representable in the same style, but no fundamental
difficulties are apparent. In treating recursive procedures, a stack can be
introduced, but it would be more elegant to do without it by explicitly saying
that the return is to the statement after the corresponding procedure call and
variables are restored to their values at the time of the call. This requires
the ability to parse the past, needed also for Elephant 2000.

We advocate an extended Algol 50 for expressing the operational seman-
tics of Algol-like programming languages, i.e. for describing the sequence of
events that occurs when the program is executed. However, our present ap-
plication is just to illustrate in a simpler setting some features that Elephant
will require. In particular, proper treatment of calling a function procedure
with side-effects will require a state that can have a value during the evalu-
ation of an expression.

Nissim Francez and Amir Pnueli (see references) used an explicit time
for similar purposes. Unfortunately, they abandoned it for temporal logic.



While some kinds of temporal logic are decidable, temporal logic is too weak
to express many important properties of programs.



