
ACTIONS AND OTHER EVENTS IN

SITUATION CALCULUS

John McCarthy
Computer Science Department

Stanford University
Stanford, CA 94305

jmc@cs.stanford.edu

http://www-formal.stanford.edu/jmc/

2002 Jan 27, 7:49 p.m.

DRAFT DRAFT DRAFT DRAFT DRAFT

Abstract

This article presents a situation calculus formalism featuring events
as primary and the usual actions as a special case. Events that are
not actions are called internal events and actions are called external

events. The effects of both kinds of events are given by effect axioms
of the usual kind. The actions are assumed to be performed by an
agent as is usual in situation calculus. An internal event e occurs in
situations satisfying the occurrence axiom for that event.

A formalism involving actions and internal events describes what
happens in the world more naturally than the usual formulations in-
volving only actions supplemented by domain constraints. Ours uses
only ordinary logic without special causal implications.

The first example is the buzzer with only internal events and which
cannot be treated at all with domain constraints, because the system
never settles down.

Our second example is the stuffy room scenario. One occurrence
axiom states that when both vents are blocked and the room isn’t
stuffy, the event Getstuffy occurs. Domain constraints are unneeded.

1

The stuffy room formalization tolerates an elaboration asserting that
when the room becomes stuffy someone unblocks a vent. If we further
add that someone else then finds the room cold and blocks the vent
again, we get a system that oscillates.

The third example is the blocks world.
The nonmonotonic reasoning involves circumscribing occurrences,

changes, and prevention one situation at a time.
Mostly the proposals of this paper are alternatives (better I hope)

to other methods of formalizing some phenomena. However, the buzzer
example and the elaboration in which the room being stuffy causes
someone to unblock a vent don’t seem to be treatable by many of the
earlier methods.

Contents

1 Introduction: Actions and other events 3

2 Sequential processes, determinism and completeness 5

3 Formalizing a buzzer 5

4 The stuffy room scenario 8

4.1 Telling stories using Occurs and Next 10
4.2 Two elaborations of the stuffy room scenario 11

5 The blocks world 12

6 Nonmonotonic reasoning—situation by situation 13

6.1 Nested circumscriptions . 16

7 Circumscriptions in the blocks world 16

8 Extensions and remarks 18

8.1 Induction in the situation calculus 18
8.2 Formalizing Oscillations . 19

8.2.1 Intervening in an oscillatory system 19
8.3 State constraints after all . 20
8.4 Events whose occurrence depends on the past 22
8.5 The stolen car scenario . 22

2

8.6 Blocks world heuristics . 23
8.7 Change, the frame problem, persistence, and elaboration tol-

erance . 24

9 Concluding remarks 26

10 Acknowledgments 26

1 Introduction: Actions and other events

[McC59] proposed mathematical logic as a tool for representing facts about
the consequences of actions and using logical reasoning to plan sequences of
actions that would achieve goals. Situation calculus as a formalism was pro-
posed in [McC63] and elaborated in [MH69]. The name “situation calculus”
was first used in [MH69] but wasn’t defined there. [McC86a] proposed to
solve the frame and qualification problems by circumscription. [Sha97] and
[Rei01a] describe several situation calculus formalisms and give references.

This article treats events in situation calculus with actions by agents
as a special case. Besides effect axioms formalizing Result(e, s) [do(e, s)
in Canada and its colonies], there are occurrence axioms asserting that in
situations satisfying certain expressions in the fluents, an event e occurs.1

It may be easier to see an action a as an event if we regard the action
symbol a as an abbreviation for the event expression Does(person, a). Look-
ing at it this way prepares the way for elaborations with occurrence axioms
that give conditions under which person will do the action a.

Some common sense phenomena that have been treated in situation cal-
culus using domain constraints are better treated by postulating that certain
internal events occur in situations satisfying certain fluent expressions. Thus
in the well known [GS88] stuffy room scenario, our formalization says that
the room becomes stuffy when both vents are blocked and becomes not stuffy
when at least one vent is unblocked.

1I suspect I need to pound the table a little here. Actions are just a kind of event, and
formalized reasoning about actions and change need to treat events as the general case
and those events which are actions as special. This has long seemed obvious to me, but
I find that many other researchers don’t want to use the same formalism for events that
are not actions of agents and those which are.

The consequence has been the introduction of extensions to logic for treating what are
called state constraints, most of which are better treated by formalizing events.

3

Occurs(e, s) means that event e occurs in situation s. Three of the axioms
of the stuffy room phenomenon are

Holds(Blocked1, s) ∧Holds(Blocked2, s)
∧¬Holds(Stuffy, s) → Occurs(Getstuffy, s),

Holds(Stuffy,Result(Getstuffy, s)),
and
Holds(Blocked1, Result(Block1, s)).

(1)

Getstuffy is an internal event and occurs all by itself when the vents are
blocked.

The reasoning we formalize is limited to forward projection in time, i.e.
we project from a situation to situations that result from the occurrence of
events. This permits a simple form of nonmonotonic reasoning in which we
minimize one situation at a time..

We use circumscription to minimize occurrences, to minimize change
(frame problem), and to minimize the fluents that prevent actions and other
events (qualification problem).

Treating internal and external events by the same formalism admits elab-
orations that turn external events into internal events. Thus we can elaborate
the stuffy room scenario by adjoining an occurrence axiom saying that when
the room becomes stuffy, someone unblocks a vent, which makes the room
unstuffy. The further elaboration that when a vent is unblocked, someone
blocks it again, perhaps from feeling cold, then the system oscillates, i.e.
never settles down.

An external event can create a situation in which the occurrence axiom
for an internal event is satisfied. This leads to a new situation in which a new
internal event can occur. When no more internal events occur the process
settles down, and we can infer a statement about the resulting stable state.
Stable states are usually characterized by domain constraints. In physics
these states often minimize potential energy.

However, we begin with a system, a buzzer, that has only internal events
and which never settles down. For that reason, the buzzer’s behavior cannot
be characterized by a domain constraint; attempting to write one in the usual
way leads to a contradiction.

4

2 Sequential processes, determinism and com-

pleteness

We need to distinguish among phenomena, processes, and theories of phe-
nomena and processes. Phenomena are aspects of the world, and processes
are a kind of phenomenon—the kind this article concerns. We have to distin-
guish between processes and theories of processes, because the same process
may be described by different theories, and these theories may be more or
less complete.

A process may or may not be deterministic, but this article deals with
deterministic processes. In a deterministic discrete process, a definite event
occurs in each situation. However, a theory about the process may or may
not permit inferring what this event is. We’ll say that the theory is complete

if it permits inferring what occurs in any completely described situation, i.e.
a situation in which all the necessary fluents have values asserted in the
theory. A lesser form of completeness is when an initial situation S0 is
completely described, and the theory allows inferring complete descriptions
of all situations that follow S0.2

The buzzer theory of the next section completely describes a discrete
sequential process.

3 Formalizing a buzzer

A buzzer consists of a relay connected to a battery by a switch that is opened
when the relay operates. If the switch is on, the relay operates and opens
the switch which turns off the relay which closes the switch. Thus the circuit
oscillates and never settles down to a stable state.

A buzzer has only internal events—at least once it is started, and this
makes its operation easy to formalize.

State constraint axioms for formalizing a buzzer analogous to those used
for the stuffy room scenario would be immediately contradictory, asserting
that the relay is on if and only if it is off. Our present situation calculus
formalism follows human common sense reasoning directly and requires no
special causal formalim or logic with implications not equivalent to their

2In Reiter’s situation calculus formalism, the situations following from S0 are all the
situations there are. We don’t wish to assume that.

5

contrapositives.
There are effect axioms and occurrence axioms. The former are well

known and give the effects of events. The latter assert that in situations in
which certain fluents hold, certain events will occur.

We distinguish between the fluent On(Sw) asserting that the switch is
on and the event Onn(Sw) that turns the switch on. The fluent holding in
a situation is asserted by Holds(On(Sw), s). Likewise for the fluent On(R)
and the event Onn(R) that concern the relay. We also have Off and Offf for
the switch and the relay.

Effect axioms:

Holds(On(R), Result(Onn(R), s))
¬Holds(On(R), Result(Offf (R), s))
Holds(On(Sw), Result(Onn(Sw), s)
¬Holds(On(Sw), Result(Offf (Sw), s)).

(2)

Occurrence axioms:

¬Holds(On(Sw), s) ∧Holds(On(R), s) → Occurs(Offf (R), s)
Holds(On(Sw), s) ∧ ¬Holds(On(R), s) → Occurs(Onn(R), s))
Holds(On(R), s) ∧Holds(On(Sw), s) → Occurs(Offf (Sw), s)
¬Holds(On(R), s) ∧ ¬Holds(On(Sw), s) → Occurs(Onn(Sw), s)

(3)

Note that each of the above occurrence axioms has a second term in the
precondition. They are needed to avoid unwanted concurrent events.

Frame assertions—for now axioms:

e = Onn(Sw) ∨ e = Offf (Sw)
→ Holds(On(R), Result(e, s)) ≡ Holds(On(R), s)).

(4)

e = Onn(R) ∨ e = Offf (R)
→ Holds(On(Sw), Result(e, s)) ≡ Holds(On(Sw), s)).

(5)

These frame assertions tell what doesn’t change. They are few enough in
this case, since there are few actions and few fluents. In general it is more
efficient to say what does change. In this case we have

6

Changes(Onn(R), On(R), s),
Changes(Offf(R), On(R), s),
Changes(Onn(Sw), On(Sw), s),
and
Changes(Offf(Sw), On(Sw), s).

(6)

In section 6 we describe how to get the frame assertions by circumscribing
Changes(e, f, s).

If an event e is asserted to occur in a situation s, we can characterize a
next situation by an axiom.

Next axiom:

Occurs(e, s) → Next(s) = Result(e, s) (7)

The initial situation is given by

¬Holds(On(Sw), S0) ∧ ¬Holds(On(R), S0) (8)

We can proceed a step at a time. We have

Occurs(Onn(Sw), S0) (9)

in accordance with (3). Hence

Next(S0) = Result(Onn(Sw), S0), (10)

and therefore, letting
S1 = Next(S0), (11)

we have
Holds(On(R), S1) ∧Holds(Off(Sw), S1). (12)

Some elaborations of the buzzer axioms will be worth doing.
1. Allow the action of stopping the buzzer to occur at any situation.
2. Consider the action of stopping the buzzer as a concurrent event.
3. A concurrency elaboration along the lines of [McC95b] and [MC98]

might be to have two non synchronized buzzers B1 and B2 with no guaranteed
temporal relation between the events involving B1 and B2.

7

4 The stuffy room scenario

The well-known problem arises when the stuffy room is formalized with a
domain constraint that when both vents are blocked by pillows the room is
stuffy. This can lead to the unintended model that when one vent is already
blocked the action of blocking the other event causes the blocked vent to
become unblocked in order to minimize change. Some complication of the
formalism is required to deal with the phenomenon. Direct formalization in
terms of actions and events avoids the difficulty and corresponds better to
the way we humans think about the problem.

We use fluents Blocked1, Blocked2, and Stuffy. We have the action events
Block1, Unblock1, Block2, Unblock2 and the internal events Getstuffy and
Ungetstuffy.

Effect axioms:

Holds(Blocked1, Result(Block1, s))
Holds(Blocked2, Result(Block2, s))
¬Holds(Blocked1, Result(Unblock1, s))
¬Holds(Blocked2, Result(Unblock2, s))
Holds(Stuffy,Result(Getstuffy, s))
¬Holds(Stuffy,Result(Ungetstuffy, s))

(13)

Occurrence axioms:

Holds(Blocked1, s) ∧Holds(Blocked2, s) ∧ ¬Holds(Stuffy, s)
→ Occurs(Getstuffy, s)

and
(¬Holds(Blocked1, s) ∨ ¬Holds(Blocked2, s)) ∧Holds(Stuffy, s)

→ Occurs(Ungetstuffy, s)

(14)

The frame axioms are

Changes(Block1, Blocked1, s),
Changes(Block2, Blocked2, s),
Changes(Unblock1, Blocked1, s),
Changes(Unblock2, Blocked2, s),
Changes(Getstuffy, Stuffy, s),
and
Changes(Ungetstuffy, Stuffy, s).

(15)

8

How they work is described in section 6.
We need to distinguish between internal events like Getstuffy and exter-

nal events like Block1. As we shall see, an external event may be an internal
event of a more comprehensive narrative, e.g. one in which Block1 occurs
when Mike is annoyed by cold air coming from V ent1.

We can tell a simple sequential story by by first describing S0, e.g. by

¬Holds(Blocked1, S0) ∧ ¬Holds(Blocked2, S0) ∧ ¬Holds(Stuffy, S0).
(16)

We can now write the narrative

S1 = Result∗(Block1, S0)
S2 = Result∗(Block2, S1)
S3 = Result∗(Unblock2, S2)
S4 = Result∗(Block2, S3)
etc.

(17)

Here Result∗(e, s) is like the Rr of [McC95a]. It is the result of doing a

followed by the occurrence of whatever internal events occur. The assumption
is that some sequence of internal events will occur after which the situation
remains the same until an external event occurs. Result∗(e, s) is undefined
in the buzzer example in which internal events occur forever.

Result∗ requires an induction axiom or schema. Here’s one candidate:

P (s) ∧ (∀s e)(P (s) ∧Occurs(e, s) → P (Result(e, s)))
→ P (Result∗(e, s)).

(18)

Result∗(e, s) = Next∗(Result(e, s))
(∀e)(¬Occurs(e, s)) → Next∗(s) = s

Occurs(e, s) → Next∗(s) = Next∗(Result(e, s)).
(19)

We also have
p(Result(Nochange, s)) ≡ p(s). (20)

The purpose of Nochange is to allow events to occur in Result∗(e, s)
without spoiling the settling down.

In the present case we will have S1 = Result∗(Block1, S0) will be the
same as Result(Block1, S0), because no internal event will occur in
Result(Block1, S0). However, we’ll have

9

S2 = Result∗(Block2, S1) = Result(Getstuffy,Result(Block2, S1)), (21)

because now the internal event Getstuffy will occur. Thus we’ll have
¬Holds(Stuffy, S1) but Holds(Stuffy, S2), ¬Holds(Stuffy, S3),
and Holds(Stuffy, S4).

We can write

S4 = Result∗(Block2, Result∗(Unblock2,
Result∗(Block2, Result∗(Block1, S0))))

= Result(Getstuffy,Result(Block2,
Result(Ungetstuffy,Result(Unblock2,
Result(Getstuffy,Result(Block2, Result(Block1, S0))))))),

(22)
which can also be written

S4 = Result∗(Block1; Block2; Unblock2; Block2, S0)

= Result∗(Block1; Block2; Getstuffy; Unblock2;

Ungetstuffy; Block2; Getstuffy, S0). (23)

Here we extend the meaning of Result to allow a sequence of events as an
argument.

We regard the formulas with Result∗ and Result∗ as syntactic abbrevia-
tions for the previous formulas, so we won’t try to axiomatize them.

4.1 Telling stories using Occurs and Next

Another way of telling stories is to always use Occurs. An external event is
axiomatized by asserting that it occurs.

10

The above story is then given by

Occurs(Block1, S0)
S1 = Next(S0) = Result(Block1, S0)
Occurs(Block2, S1)
S1′ = Next(S1) = Result(Block2, S1)
Occurs(Getstuffy, S1′), by inference
S2 = Next(S1′) = Result(Getstuffy, S1′)
Occurs(Unblock2, S2)
S2′ = Next(S2) = Result(Unblock2, S2)
Occurs(Ungetstuffy, S2′)by inference
S3 = Next(S2′) = Result(Ungetstuffy, S2′)
Occurs(Block2, S3)
S3′ = Next(S3) = Result(Block2, S3)
Occurs(Getstuffy, S3′)by inference
S4 = Next(S3′) = Result(Getstuffy, S3′).

(24)

We can also write the story more briefly as

Occurs(Block1, S0)
S1 = Next∗(S0) = Result∗(Block1, S0)
Occurs(Block2, S1)
S2 = Next∗(S1) = Result∗(Block2, S1)
Occurs(Unblock2, S2)
S3 = Next∗(S2) = Result∗(Unblock2, S2)
Occurs(Block2, S3)
S4 = Next∗(S3) = Result∗(Block2, S3)

(25)

Still more briefly

S4 = Next∗(Next∗(Next∗(Next∗(S0))))
= Result∗(Block2, Result∗(Unblock2,

Result∗(Block2, Result∗(Block1, S0))))
(26)

4.2 Two elaborations of the stuffy room scenario

The first elaboration says that when Pat finds the room stuffy he unblocks
vent2. We have

Holds(Stuffy, s) → Occurs(Unblock2, s), (27)

11

or, more elaborately,

Holds(Stuffy, s) → Occurs(Becomes-Ucomforable(Pat), s),
Holds(Uncomfortable, Pat, Result(Becomes-Ucomforable(Pat), s))
Holds(Uncomfortable, Pat, s) → Occurs(Does(Pat, Unblock-V ent2), s)
¬Holds(Blocked2, Result(Does(Pat, Unblock-V ent2), s0)).

(28)
(24) remains the same except that perhaps we should change the notation
so that instead of S3 and S3′ we write S2′′ and S2′′′, since these are now
intermediate situations. The situation S4 is now unstable.

Now let’s add a second elaboration in which Mike finds the room cold
when there is an unblocked vent and blocks vent2. It is expressed by adding

Holds(Unstuffy, s) → Occurs(Block2, s). (29)

With both of these elaborations, we get an oscillation; Pat unblocks vent2
and Mike blocks it again. Result∗ and Next∗ are no longer defined.

5 The blocks world

Assume enough unique names axioms.
The blocks world involves the frame problem in a more significant way

than do the buzzer and the stuffy room scenarios.
We use the predicate Prevents(p, e, s) to say that a move is prevented

by there being a block on top of the block to be moved or on the destination
unless the destination is the table. We thereby skip the use of the fluent
Clear(x) prevalent in many blocks world sitcalc theories.

Here’s the effect axiom for moving a block.

(∀p)(¬(Prevents(p,Move(x, y), s) ∧Holds(p, s)))
→

(Holds(On(x, y), Result(Move(x, y), s)))
∧
((Holds(On(x, z), s)) → ¬Holds(On(x, z), Result(Move(x, y), s)))),

(30)
and here are the axioms for prevention:

12

Prevents(On(z, x),Move(x, y), s)
and
y 6= Table → Prevents(On(z, y),Move(x, y), s).

(31)

We adopt the usual way of emphasizing the frame problem by introducing
the action of painting a block a certain color. Thus

(∀p)(¬(Prevents(p, Paint(x, c), s) ∧Holds(p, s)))
→ Holds(Color(x, color), Result(Paint(x, color), s)),

(32)

or, using object valued, i.e. non propositional, fluents,

(∀p)(¬(Prevents(p, Paint(x, c), s) ∧Holds(p, s)))
→ V alue(Color(x), Result(Paint(x, color), s)) = color.

(33)

The change axioms for the blocks world are

Changes(Paint(x, c), Color(x), s),
Holds(On(x, z), s) → Changes(Move(x, y), On(x, z), s)
∧Changes(Move(x, y), On(x, y), s).

(34)

The nonmonotonic reasoning associated with the blocks world will be
discussed after the section dealing with nonmonotonic reasoning in situation
calculus in general.

6 Nonmonotonic reasoning—situation by sit-

uation

We use circumscription to minimize the events that occur in a situation, the
fluents that might prevent an event from having its standard effect, and the
changes in fluents. In contrast to the formalism of [McC86a] which minimized
predicates over all the arguments, we minimize for each successive situation
separately. However, in doing this minimization in s we take as fixed the
Holds(f, s) sentences and the V alue(exp, s) = . . . sentences inferred from
the effects of the previous situation.

Doing the nonmonotonic reasoning in situations successively corresponds
to the way people predict the consequences of sequences of actions and events.

13

It seems to give the same conclusions as Yoav Shoham’s chronological mini-
mization [Sho88] but is computationally more straightforward. It also avoids
the Yale shooting problem and its friends.3

However, we advocate this only for projection problems, i.e. reasoning
about the future from information about the past. It sometimes has the same
effects as chronological minimization [Sho88] but is formally quite different—
and simpler. The method is not appropriate for the stolen car scenario in
which one has to reason from an assertion (that the car is missing) about a
later situation. 4

With the present formalism, the person or agent setting up the problem
must know that projection forward in time is appropriate. It would be better
if this were a consequence of the formalized facts.

Now let’s consider circumscribing at each situation separately. The sim-
plest case is when we have a predicate Foo(x, y, s).

We write

Foo′ ≤s Foo ≡ (∀x y)(Foo′(x, y, s) → Foo(x, y, s)),
(Foo′ <s Foo) ≡ (Foo′ ≤s Foo) ∧ ¬(Foo′ =s Foo),
and
Foo′ =s Foo ≡ (∀x y)(Foo′(x, y, s) ≡ Foo(x, y, s)).

(35)

Then the circumscription of Foo(x, y, s) takes the form

Axiom(Foo, vars, s) ∧ (∀foo′ vars′)(Axiom(foo′, vars′)
→ ¬(foo′ <s Foo)).

(36)

Here vars stands for a list of the entities being varied as Foo is minimized.
This spells out to

3The ideas of internal and external events of the preceding sections are independent
of the formalism used for nonmonotonic reasoning. For example, Golog [Rei01a] or the
Causal Calculator [aA01] could be used—perhaps with some modifications for the buzzer
and the oscillating stuffy room.

4Actually part of the stolen car scenario can be treated provided we don’t suppose
that the car being missing is to be projected from information about the past. Certainly
we can go forward from the situation in which the car is missing to further events in the
future. Likewise, in the story of Junior’s travels [McC95b], we can assert that Junior loses
his ticket to Moscow in London and reason forward from that fact.

14

Axiom(Foo, vars, s) ∧ (∀foo′ vars′)
(Axiom(foo′, vars′) ∧ ((∀x y)(foo′(x, y, s) → Foo(x, y, s))
→ (∀xy)(Foo(x, y, s) ≡ foo′(x, y, s)))).

(37)

Call this formula Circ(Axiom; Foo; vars; s). This is the notation of
[Lif94] with the addition of the argument s to say that s is kept fixed.

The general frame axioms are

¬Changes(e, p, s) → Holds(p,Result(e, s)) ≡ Holds(p, s) (38)

for propositional fluents and

¬Changes(e, f, s) → V alue(f,Result(e, s)) = V alue(f, s). (39)

for general fluents.
Suppose we allow complex fluents, say p And q when p and q are propo-

sitional fluents. We then need an axiom

Changes(e, p, s) ∨ Changes(e, q, s) → Changes(e, p And q, s). (40)

Similar axioms are required for the other propositional functions of fluents
and for the compositions of non-propositional fluents.

[This leads to difficulties when we want to delimit what changes, since
there are arbitrarily complex compositions of fluents. We’ll confine ourselves
to elementary fluents for now by not putting compositions in the language.]

In these circumscriptions we also minimize Holds.
This tolerates elaborations like

Holds(Weak, s) → Prevents(Weak,Move(x, y), s). (41)

If Holds(Weak, s) isn’t asserted, Move(x, y) will not be prevented.
Lin and Shoham, [LS95] consider a theory of action to be provably correct

if doing the nonmonotonic reasoning results in a complete nonmonotonic
theory of the action.

15

6.1 Nested circumscriptions

We can regard the successive circumscriptions as nested, i.e. in reasoning
about Result(e, s), we take as an axiom the circumscriptions done in s. This
would be similar to the nested abnormality theories of [Lif95]. The differences
are interesting.

Lifschitz circumscribes predicates called ab, a different ab for each level
of nesting. He gets rid of the abs in the result of the circumscription by
writing (∃ab)Foo(ab) rather than just Foo(ab). We circumscribe three pred-
icates: Prevents, Occurs, and Changes. Maybe we could get rid of these
by existential quantification, but it seems to me that at least Occurs(e, Sk)
should be part of the final story. We could accomplish this by introduc-
ing an Ab predicate and writing ¬Ab(e, Sk) → ¬Occurs(e, Sk) and varying
Occurs. Existential quantification then gets rid of Ab while keeping Occurs.
Prevents and Changes seem to be genuinely auxiliary predicates and might
be removed from final formulas by existential quantification.

7 Circumscriptions in the blocks world

Let an initial situation S0 be described by the conjunction

Holds(On(A,B), S0) ∧Holds(On(B,C), S0)
∧Holds(On(C, Table), S0) ∧Holds(On(D,Table), S0)
∧V alue(Color(A), S0) = Red ∧ V alue(Color(B), S0) = Blue

∧V alue(Color(C), S0) = Green ∧ V alue(Color(D), S0) = Purple.

(42)

The presence of other blocks than A, . . . ,D is excluded when we circum-
scribe Holds in the situation S0. The result is

Holds(p, S0) ≡ p = On(A,B)
∨p = On(B,C) ∨ p = On(C, Table) ∨ p = On(D,Table).

(43)

Using a function for color saves us this trouble of limiting in the colors.
If we used Holds(Color(x, c), s) we would have to exclude block A having
another color as well as red.

Call T0 the conjunction of the formulas (38–43) and the formulas (30–
34). Circumscribing Occurs(e, S0) using T0 lets us conclude that no event
occurs in S0.

16

Now add

Occurs(Move(A,D), S0). (44)

to begin a story.
Circumscribing Occurs with T0 ∧ Occurs(Move(A,D), S0) now shows

that Move(A,D) is the only event that occurs in S0. The circumscription
formula is

Circ(T0 ∧Occurs(Move(A,D), S0); Occurs; S0) (45)

leads to

Occurs(e, S0) ≡ e = Move(A,D). (46)

Circumscribing Changes gives

Changes(Move(A,D), f, S0) ≡ f = On(A,B) ∨ f = On(A,D), (47)

and circumscribing Prevents gives

(∀f)¬Prevents(f,Move(A,D), S0). (48)

With these we can infer

Next∗(S0) = Next(S0) = Result(Move(A,D), S0) (49)

and

Holds(On(A,D), Result(Move(A,D), S0)) (50)

and

Holds(f,Next(S0)) ≡
f = On(A,D) ∨ f = On(B,C) ∨ f = On(C, Table) ∨ f = On(D,Table).

(51)
The colors of the blocks remain the same.

17

8 Extensions and remarks

The content of this section isn’t needed to project forward. However, there
are some interesting issues.

Aarati Parmar pointed out that the semantics of an action theory is
changed by the presence of Occurs axioms. Without Occurs, the interpreta-
tions are trees branching for the different events possible in a situation. With
Occurs an interpretation must say which event occurs, so the interpretations
are linear. The actual scenarios are sometimes mixed. The interpretations
branch at the external actions and are linear where an Occurs axiom deter-
mines what internal action occurs.

8.1 Induction in the situation calculus

Several kinds of mathematical induction seem to be required. For example,
one may want to prove a proposition P (Next∗(s)) by showing that it is true
for s and is preserved by the events that occur between s and Next∗(S).
A related kind of induction is needed to prove that something is true for all
situations arising in the operation of a buzzer. The simplest case of the Next∗

induction might be to show that a block unmoved by each of a sequence of
events is in the same position in Next∗(s).

The simplest situation calculus is Reiter’s [Rei01b]. The formula is

P (S0) ∧ ((∀a s)(P (s) → P (Result(a, s)))) → (∀s)P (s). (52)

Here are two formulas

P (s) ∧ ((∀e s)(P (s) ∧Occurs(e, s) → P (Nexts))))
→ P (Next∗(s)).

(53)

(53) is appropriate when Next∗(s) is defined.
When Next∗(s) is not defined, as in the buzzer case, we use s ≤ s′ to

mean that s′ is a distant successor of s and have the axiom.

P (s) ∧ s ≤ s′ ∧ ((∀e s)(P (s) ∧Occurs(e, s) → P (Nexts))))
→ P (s′).

(54)

18

8.2 Formalizing Oscillations

The buzzer oscillates, i.e. the situation repeats again and again. So does the
stuffy room scenario with the two elaborations that cause Vent2 to become
blocked and unblocked repeatedly. However, we don’t need a complete rep-
etition of the situation to have oscillation. Suppose, or example, we add a
clock to the buzzer, a natural number valued fluent that each event incre-
ments by 1. Then although the whole situation would not repeat, we would
still want to consider the system as oscillatory.

This suggests a relative notion of oscillatory, i.e. oscillatory with respect
to certain fluents.

Moreover, we would like to consider the buzzer as oscillating even if we
provide for it stopping its oscillation by being turned off.

8.2.1 Intervening in an oscillatory system

As we have described the buzzer, it cannot be turned off. Likewise the stuffy
room process cannot be changed once we have added the elaborations about
people blocking and unblocking the vent. See (27) and (29).

Here are two ways of doing it.
1. Introduce a new propositional fluent Wait and add effect axioms to

each of the events

Wait(Result(e, s)). (55)

Add a precondition for each of the previous occurence axioms of ¬Wait(s).
Add a new axiom

[(∀e)(¬Occurs(e, s))] → ¬Wait(Next(s)). (56)

The effect of these axioms is after each event there is a wait situation in
which an external event can occur, e.g. opening a switch that will turn off
the buzzer.

2. Another way is with the axioms

Occurs(a, s) ∧ External(a) ∧Occurs(e, s)
→ Next(s) = Result(a,Result(e, s))

(57)

and

Occurs(e, s) ∧ (∀e′)(Occurs(e′, s) → e′ = e) → Next(s) = Result(e, s).
(58)

19

Public opinion (3 votes) prefers this solution, which is a limited kind of
concurrency. Only certain kinds of interventions can be done this way.

8.3 State constraints after all

As was shown in Section 4, the condition for a room being stuffy is better
formalized with effect axioms, occrrence axioms, and the events Getstuffy

and Ungetstuffy. Lin and Reiter [LR94] consider the Emperor’s decree
that no more than one object (block) be yellow, which may be regarded as
a domain constraint. They point out that it is more efficient to encode the
constraint as a precondition that a block may be painted yellow only if no
block is already yellow. Their way of expressing this does not readily elaboate
to require that no more than seven blocks be yellow.

I think logical AI needs a more complex treatment. It seems to me that
efficiency conflicts with generality. It is bad or dangerous to have more than
one yellow block, but perhaps only if one is not a special favorite of the
emperor or if one is just about to die anyway. The point is that common
sense (at least human level common sense) requires that such constraints
tolerate elaboration. Human level common sense also allows the constraint
to become an action precondition as a result of some inference. This inference
should take place within the logical formalization.

Lin and Reiter include the following formula.

(∀x y s)(Poss(Paint(x, y), s)
≡ (Nearby(x, s) ∧Haspaint(y, s)
∧(∀x1)(Color(x1, Y ellow, s) ∧ y = Y ellow → x = x1))).

(59)

This formula is specialized to the emperor tolerating just one yellow block.
If he tolerates 7 yellow blocks, we had better use set notation, i.e. refer to
card({x|Color(x, Y ellow)}) ≤ 7.5

There are some domain constraints that are not naturally formalized by
internal actions. One is the blocks world constraint that a block may not be
on top of itself. Formulas like

Above(Top(block), Bottom(block), s) (60)

5I pound the table here because of some resistance to the idea that axiomatic set theory
makes logical AI easier.

20

or even

Height(Top(block), s)−Height(Bottom(block), s) ≥ 1.0cm (61)

tell more about the world than the simple

¬On(block, Top(block), s). (62)

An important application for the direct use of state constraints is when
an event starts a process that eventually leads to an equilibrium state. For
example, if a drop a coin on the floor it will bounce around for a while
and then settle down. It will reach equilibrium in a second or so, and I
am interested in whether the coin ends up heads or tails rather than in the
process of its settling down. In the case of the coin the equilibrium condition,
at least what we want to know about it is easy to state, namely

On(coin, floor, Result∗(Drop(coin, s))) ∧ (Heads(coin,Result∗(s))
∨Tails(coin,Result∗(s))),

(63)

where using Result∗ means that we are skipping by some internal events, in
this case not formalized.

Consider tossing a coin. This sets in motion the events of the coin falling
to the floor, bouncing a few times and settling down. All these processes
cannot be followed in detail because of lack of knowledge of the initial con-
ditions and the laws of motion. However, what we do know is that the coin
will stop moving shortly and end up heads or tails. That’s all we need to
know.

While everyone understands this informally, physics offers an explanation.
The kinetic energy is dissipated and the system of the tossed coin ends up in
a local minimum of the potential energy of which there are two: heads and
tails.

Physics aside, this is a case where state constraints, in this case for equi-
librium give us the answer of how the process ends up.

Another example may be concocted from the elaborated stuffy rooom
scenario. While Pat and Mike disagree in their preferences, under normal
circumstances we can suppose they will come to an agreement in some short
time. One will defer to the other in the matter of the blocked vents. As
with the coins, the theory of eventual agreement doesn’t predict what the
agreement will be.

More generally, Aarati Parmar suggests that internal events arise in re-
sponse to non-equilibrium situations.

21

8.4 Events whose occurrence depends on the past

Suppose we want George to unblock both vents when the room becomes
stuffy. When he has unblocked one vent, the room becomes unstuffy, so the
physical situation is as it was when he blocked the first vent, so he needs
to remember that the room was previously stuffy. We can make occurrences
depend on past situations by adding for each event e an additional effect
axiom

Past(Result(e, s)) = s. (64)

Notice that Past(Past, s)) is the situation two events back.
We can have George unblock Vent1 after he has unblocked Vent2 and the

room has become unstuffy by introducing the occurrence axiom

Stuffy(Past(Past(s)) → Occurs(Unblock1, s). (65)

The history as just described does not say what events occurred. This
information is provided by having for each event e the axiom

Lastevent(Result(e, s)) = e. (66)

Notice that this formalization is noncommittal as to whether the infor-
mation is in an actor’s memory.

This seems neat, and maybe it will be useful.

8.5 The stolen car scenario

The stolen car scenario gives unwarranted conclusions when simple projection
is applied.

Stolen(car, s) ∧ Seen(car, s′) ∧ s′ < s

→ (∃s′′thief)(s′ < s′′ < s ∧Occurs(Does(thief, Steal(car)), s′′)
(67)

Stolen(car, s) → ¬Findable(car, s). (68)

Since there are several causes that may make the car not findable, the
conclusion that it was stolen is normally an abduction.

22

8.6 Blocks world heuristics

The object is to represent heuristic information declaratively. We represent
the final-position heuristic discussed in [Sie97] and [Sie99].

In general, a goal will be a predicate on situations. However, in the
blocks world a goal can be like a situation assuming that the goal is to create
a definite total configuration of blocks. We’ll treat this conceptually easy
case first and then consider how to generalize it, e.g. to making a given
tower but not caring about the rest of the blocks.

We are interested in the predicate Final(x, g, s) asserting that block x

is in final position in situation s with respect to goal g. A block in final
position need never be moved again, and it is always a good move to move a
block to final position. Otherwise some block should be moved to the table,
i.e. unless a block is moved to final position, it should not be moved onto
another block.

The following formulas characterize what occurs when a strategy satisfy-
ing these conditions is employed.

Final(x, g, s) ≡
if Holds(On(x, Table), g)

then Holds(On(x, Table), s)
else (∃y)(Holds(On(x, y), s) ∧Holds(On(x, y), g) ∧ Final(y, g, s))

(69)

Achieved(g, s) ≡ (∀x ∈ Blocks(g))(Holds(On(x, y), g)
→ Holds(On(x, y), s)),

(70)

where
Blocks(s) = {x|(∃y)Holds(On(x, y), s)}. (71)

MovesF inal(x, y, g, s)
≡ Holds(Clear(x), s) ∧Holds(Clear(y), s)

∧Final(y, g, s) ∧Holds(On(x, y), g).
(72)

23

¬Achieved(g, s)
→
((∃x y)(MovesF inal(x, y, g, s) ∧Occurs(Move(x, y), s)))
∨
¬(∃x y)(MovesF inal(x, y, g, s))
∧(∃x)(¬Final(x, g, s) ∧ ¬Holds(On(x, Table), s)

∧Occurs(Move(x, Table), s))

(73)

This equation says that if the goal isn’t yet achieved and there is a move
of a block to final position, then such a move is made. If there isn’t such a
move, then some block is moved to the table. Since (73) doesn’t say which
block is moved to the table, additional formulas restricting which block is
moved, e.g. to a block whose move to the table breaks a cycle inhibiting
moving some block to final position, are compatible with (73).

(73) doesn’t give a strategy, but it says what happens if any behavior
that moves some block to final position when this is possible and otherwise
moves some block to the table. From (73) it should be inferrable that the
goal is eventually achieved.

A real strategy involves lookahead which should be done on an imaginary
board on which moves can be made and taken back.

8.7 Change, the frame problem, persistence, and elab-

oration tolerance

The frame problem arises when we need to describe the effects of events
that change some fluents and not others. The prototypical example is that
moving a block doesn’t change the colors of any blocks, and painting a block
a certain color doesn’t change the positions of any blocks. There are several
ways of formalizing this. Monotonically we can attach the fluents to a frame
- or state and use the functions c(x, ξ) and a(x, value, ξ). Non-monotonically,
we can minimize change, assuming the only fluents are color and location.

However, painting and moving is too simple to exhibit the general prob-
lem. Suppose a, b, and c are three fluents satisfying value(a, s)+value(b, s)+
value(c, s) = 0, and we want to describe the effect of changing a. We can
have b unchanged or c unchanged but not both.

If we have a frame ξ, we can describe change in terms of the functions a

and c. However, an effect axiom will sometimes have to specify changes in

24

more than one variable.
Now for elaboration tolerance.

1. The simplest elaboration is to introduce new fluents unconnected with
the old and perhaps new events involoving them.

2. The frame assertions we have used state that a fluent retains its value
unless there is a reason for change. A more general persistence property
would be that a process continues unless there is some reason for it not
to.

Clearly this should only apply to some processes, but the buzzer should
be one of them. The buzzer will continue to buzz until something stops
it. For this we propose a fluent Buzzing and events StartBuzzing and
StopBuzzing. We want the general principle of minimizing change to
apply to Buzzing. We’ll need more if we want to consider interactions
with specific states of the buzzer. It would seem that at least the fluent
Buzzing should be definable, but this will require a more general notion
than an instantaneous situation.

3. Consider the buzzing elaboration of the stuffy room scenario given in
section 4.2. Suppose Pete becomes annoyed at Pat and Mike repeatedly
unblocking and blocking the vent2 and intervenes in some way. We
would like to be able to formalize Pete’s intervention in a way that
does not depend on Pat and Mike having done a specific number of
Unblock2 and Block2 actions.

This isn’t much, but I hope it’s a start on turning oscillatory processes
into fluents. Note that the matter gives people little trouble, except
when we need to get specific about when an intervention occurs.

Graham White [Whi01] asks, “Does the situation calculus have a seman-
tics?”. He points out that two situation calculus theories, equivalent in their
sets of models, can have different nonmonotonic consequences when change
of fluents is minimized even when the fluents of each theory have definitions
in terms of the fluents of the other. I draw a different conclusion from this
phenomenon than White does. My conclusion is that a theory including cir-
cumscription specifies what is minimized, and when it is transformed to a
different language, the circumscription formulas also need to be appropriately

25

transformed. When a situation calculus theory is transformed, then expres-
sions representing what fluents persist by default must also be transformed.
Such a transformation will, in general, replace an atomic fluent by a complex
expression. This means that when transformations are to be allowed, the
circumscription formalism must allow the minimization of expressions and
not just predicates.

9 Concluding remarks

As mentioned in Section 6, our formalism requires that the rules about what
to circumscribe are outside the theory at first. In [McC86b] I proposed simple

abnormality theories in which all the decision about what to circumscribe
were included in axioms involving the single predicate ab which was the only
predicate minimized. The paper was vague about what was to be varied,
although varying all predicates seemed to work on the examples given, except
that the formalism suffered from the unintended models of the Yale shooting
problem [HM86] and similar problems discovered by Vladimir Lifschitz in
the blocks world. I still held some hope that only the particular simple
abnormality theories were inadequate, and that YSP and friends could be
solved by different simple abnormality theories. Tom Costello [Cos98] showed
that no simple abnormality theory could work under certain circumstances.

10 Acknowledgments

This work benefitted from discussions with Eyal Amir, Tom Costello, Ron
Fadel, Hector Levesque, Vladimir Lifzchitz, Fangzhen Lin, Sheila McIlraith,
Aarati Parmar, Raymond Reiter, and Tran Son.

This research was partly supported by SRI Subcontract No. 34-000144
under SPAWAR Prime Contract No. N66001-00-C-8018.

References

[aA01] Texas Action Group at Austin. Causal calculator home page,
2001. http://www.cs.utexas.edu/users/tag/cc.

26

[Cos98] Tom Costello. The expressive power of circumscription. Artificial

Intelligence, 104(1–2):313–329, 1998.

[GS88] Matthew L. Ginsberg and David E. Smith. Reasoning about
action I: A possible worlds approach. Artificial Intelligence,
35(2):165–195, 1988.

[HM86] S. Hanks and D. McDermott. Default reasoning, nonmonotonic
logics and frame problem. In Proceedings of AAAI-86, pages 328–
333. Morgan Kaufmann, 1986.

[Lif94] Vladimir Lifschitz. Circumscription. In J. A. Robinson Dov
M. Gabbay, C. J. Hogger, editor, Handbook of logic in artificial in-

telligence and logic programmin, volume 3, pages 297–352. Oxford,
1994.

[Lif95] V. Lifschitz. Nested abnormality theories. Artificial Intelligence,
74:351–365, 1995.

[LR94] Fangzhen Lin and Ray Reiter. State constraints revisited. Journal

of Logic and Computation, 4:655–678, 1994.

[LS95] Fangzhen Lin and Yoav Shoham. Provably correct theories of
action. Journal of the ACM, 42(2):293–320, March 1995.

[MC98] John McCarthy and Tom Costello. Combining narratives. In Pro-

ceedings of Sixth Intl. Conference on Principles of Knowledge Rep-

resentation and Reasoning, pages 48–59. Morgan-Kaufman, 1998.

[McC59] John McCarthy. Programs with Common Sense6. In Mechanisa-

tion of Thought Processes, Proceedings of the Symposium of the

National Physics Laboratory, pages 77–84, London, U.K., 1959.
Her Majesty’s Stationery Office. Reprinted in [McC90].

[McC63] John McCarthy. Situations, actions and causal laws. Technical
Report Memo 2, Stanford University Artificial Intelligence Labo-
ratory, Stanford, CA, 1963. Reprinted in [Min68].

6http://www-formal.stanford.edu/jmc/mcc59.html

27

[McC86a] John McCarthy. Applications of Circumscription to Formaliz-
ing Common Sense Knowledge7. Artificial Intelligence, 28:89–116,
1986. Reprinted in [McC90].

[McC86b] John McCarthy. Applications of Circumscription to Formaliz-
ing Common Sense Knowledge8. Artificial Intelligence, 28:89–116,
1986. Reprinted in [McC90].

[McC90] John McCarthy. Formalizing Common Sense: Papers by John

McCarthy. Ablex Publishing Corporation, 1990.

[McC95a] John McCarthy. Situation Calculus with Concurrent Events and
Narrative9. 1995. Web only, partly superseded by [MC98].

[McC95b] John McCarthy. Overcoming unexpected obstacles. http://www-
formal.stanford.edu/jmc/glasgow.html, 1995.

[MH69] John McCarthy and Patrick J. Hayes. Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence10. In B. Meltzer
and D. Michie, editors, Machine Intelligence 4, pages 463–502. Ed-
inburgh University Press, 1969. Reprinted in [McC90].

[Min68] Marvin Minsky, editor. Semantic information processing. MIT
Press, 1968.

[Rei01a] Raymond Reiter. Knowledge in Action. M.I.T. Press, 2001.

[Rei01b] Raymond Reiter. Knowledge in Action. M.I.T. Press, 2001.

[Sha97] Murray Shanahan. Solving the Frame Problem, a mathematical

investigation of the common sense law of inertia. M.I.T. Press,
1997.

[Sho88] Yoav Shoham. Chronological ignorance: Experiments in non-
monotonic temporal reasoning. Artificial Intelligence, 36(3):279–
331, 1988.

7http://www-formal.stanford.edu/jmc/applications.html
8http://www-formal.stanford.edu/jmc/applications.html
9http://www-formal.stanford.edu/jmc/narrative.html

10http://www-formal.stanford.edu/jmc/mcchay69.html

28

[Sie97] Josefina Sierra. Blocks world heuristics manuscript, 1997.

[Sie99] J. Sierra. Declarative formalization of heuristics (taking advice in
the blocks world). In International Conference on Computational

Intelligence for Modelling Control and Automation, pages 221–
228, 1999.

[Whi01] Graham White. Does the situation calculus have a semantics?
2001. manuscript for now.

/@steam.stanford.edu:/u/ftp/jmc/buzzer.tex: begun Fri Apr 6 2001, latexed January 27, 2002 at 7:49 p.m.

29

