
FORMALIZING CONTEXT

(Expanded Notes)

John McCarthy and Saša Buvač
Computer Science Department

Stanford University
Stanford

California 94305-2140.
{jmc, buvac}@sail.stanford.edu

Abstract

These notes discuss formalizing contexts as first class objects. The basic relation is
ist(c, p). It asserts that the proposition p is true in the context c. The most important
formulas relate the propositions true in different contexts. Introducing contexts as
formal objects will permit axiomatizations in limited contexts to be expanded to tran-

scend the original limitations. This seems necessary to provide AI programs using logic
with certain capabilities that human fact representation and human reasoning possess.
Fully implementing transcendence seems to require further extensions to mathematical
logic, i.e. beyond the nonmonotonic inference methods first invented in AI and now
studied as a new domain of logic.

1 Introduction

These notes contain some of the reasoning behind the proposals of [McC87] to introduce
contexts as formal objects. The present proposals are incomplete and tentative. In particular
the formulas are not what we will eventually want, and we will feel free to use formulas in
discussions of different applications that aren’t always compatible with each other. This is
an expanded and revised version of [McC93].

Our object is to introduce contexts as abstract mathematical entities with properties
useful in artificial intelligence. Our attitude is therefore a computer science or engineering
attitude. If one takes a psychological or philosophical attitude, one can examine the phe-
nomenon of contextual dependence of an utterance or a belief. However, it seems to us
unlikely that this study will result in a unique conclusion about what context is. Instead, as
is usual in AI, various notions will be found useful.

One major AI goal of this formalization is to allow simple axioms for common sense
phenomena, e.g. axioms for static blocks world situations, to be lifted to contexts involving
fewer assumptions, e.g. to contexts in which situations change. This is necessary if the

1

axioms are to be included in general common sense databases that can be used by any
programs needing to know about the phenomenon covered but which may be concerned
with other matters as well. Rules for lifting are described in section 4 and an example is
given.

A second goal is to treat the context associated with a particular circumstance, e.g. the
context of a conversation in which terms have particular meanings that they wouldn’t have
in the language in general.

The most ambitious goal is to make AI systems which are never permanently stuck with
the concepts they use at a given time because they can always transcend the context they
are in—if they are smart enough or are told how to do so. To this end, formulas ist(c, p)
are always considered as themselves asserted within a context, i.e. we have something like
ist(c′, ist(c, p)). The regress is infinite, but we will show that it is harmless.

The main formulas are sentences of the form

c′ : ist(c, p),

which are to be taken as assertions that the proposition p is true in the context c, itself
asserted in an outer context c′. (We have adopted Guha’s [Guh91] notation rather than
that of [McC87], because he built his into Cyc, and it was easy for us to change ours.) For
now, propositions may be identified with sentences in English or in various logical languages,
but we may later take them in the sense of [McC79b] as abstractions with possibly different
identity conditions. We will use both logical sentences and English sentences in the examples,
according to whichever is more convenient.

Contexts are abstract objects. We don’t offer a definition, but we will offer some exam-
ples. Some contexts will be rich objects, like situations in situation calculus. For example,
the context associated with a conversation is rich; we cannot list all the common assump-
tions of the participants. Thus we don’t purport to describe such contexts completely; we
only say something about them. On the other hand, the contexts associated with certain
microtheories are poor and can be completely described.

Here are some examples.

c0 : ist(context-of(“Sherlock Holmes stories”), “Holmes is a detective”)

asserts that it is true in the context of the Sherlock Holmes stories that Holmes is a detective.
We use English quotations here, because the formal notation is still undecided. Here c0 is
considered to be an outer context. In the context context-of(“Sherlock Holmes stories”),
Holmes’s mother’s maiden name does not have a value. We also have

c0 : ist(context-of(“U.S. legal history”), “Holmes is a Supreme Court Justice”).

Since the outer context is taken to be the same as above, we will omit it in subsequent
formulas until it becomes relevant again. In this context, Holmes’s mother’s maiden name
has a value, namely Jackson, and it would still have that value even if no-one today knew it.

ist(c1, at(jmc, Stanford)) is the assertion that John McCarthy is at Stanford University
in a context in which it is given that jmc stands for the first author of this paper and that
Stanford stands for Stanford University. The context c1 may be one in which the symbol

2

at is taken in the sense of being regularly at a place, rather than meaning momentarily at
the place. In another context c2, at(jmc, Stanford) may mean physical presence at Stanford
at a certain instant. Programs based on the theory should use the appropriate meaning
automatically.

Besides the sentence ist(c, p), we also want the term value(c, term) where term is a term.
For example, we may need value(c, time), when c is a context that has a time, e.g. a context
usable for making assertions about a particular situation. The interpretation of value(c, term)
involves a problem that doesn’t arise with ist(c, p). Namely, the space in which terms take
values may itself be context dependent. However, many applications will not require this
generality and will allow the domain of terms to be regarded as fixed.

Here’s another example of the value of a term depending on context:

c0 : value(context-of(“Sherlock Holmes stories”), “number of Holmes’s wives”) = 0

whereas

c0 : value(context-of(“U.S. legal history”), “number of Holmes’s wives”) = 1.

We can consider setof-wives(Holmes) as a term for which the set of possible values depends
on context. In the case of the Supreme Court justice, the set consists of real women, whereas
in the Sherlock Holmes case, it consists of fictitious women.

The remainder of this paper is organized as follows. In §2 we give examples of some
elementary relations among contexts. The basic operations of contextual reasoning, entering
and exiting contexts, are introduced in §3. In §4 we focus on lifting axioms—axioms relating
what is true in one context based on what is true in another context. Building on the basic
notions of entering/exiting contexts and lifting axioms, §5 shows how contexts can be used to
reason in the style of natural deduction. To illustrate short term applicability of contexts, §6
demonstrates how the context formalism aids in the integration of databases which were not
originally intended to be used together. In §7 we treat contexts associated with particular
circumstances, namely those that come up in a conversation. The transcending of the context
an AI system is in, as discussed in §8, might result in AI systems which are never permanently
stuck with the concepts they use at a particular time. In §9, we argue that all sentences
will always be context dependent, and thus it is not possible to define an absolute outermost
context. Returning to applications, in §10 we sketch how contexts can be used to represent
mental states and revise the beliefs of an agent. We conclude with a some remarks in §11.
Most of the ideas and results in §2–§4 and §8–§11 were first reported in [McC93].

2 Relations among Contexts

There are many useful relations among contexts and also context valued functions. Here are
some.

1. specialize-time(t, c) is a context related to c in which the time is specialized to have
the value t. We may have the relation

c0 : ist(specialize-time(t, c), at(jmc, Stanford)) ≡ ist(c, at-time(t, at(jmc, Stanford))).

3

Here at-time(t, p) is the assertion that the proposition p holds at time t. We call this a
lifting relation. It is convenient to write at-time(t, foo(x, y, z)) rather than foo(x, y, z, t),
because this lets us drop t in certain contexts. Many expressions are also better represented
using modifiers expressed by functions rather than by using predicates and functions with
many arguments. Actions give immediate examples, e.g. slowly(on-foot(go)) rather than
go(on-foot,slowly).

Instead of using the function specialize-time, it may be convenient to use a predicate
specializes-time and an axiom

c0 : specializes-time(t, c1, c2) ∧ ist(c1, p) ⊃ ist(c2, at-time(t, p)).

This would permit different contexts c1 all of which specialize c2 to a particular time.
There are also relations concerned with specializing places and with specializing speakers

and hearers. Such relations permit lifting sentences containing pronouns to contexts not
presuming specific places and persons.

2. If q is a proposition and c is a context, then assuming(p, c) is another context like c in
which p is assumed, where “assumed” is taken in the natural deduction sense. We investigate
this further in §5.

3. There is a general relation specializes between contexts. We say specializes(c1, c2)
when c2 involves no more assumptions than c1. We have nonmonotonic relations

specializes(c1, c2) ∧ ¬ab1(p, c1, c2) ∧ ist(c1, p) ⊃ ist(c2, p).

and

specializes(c1, c2) ∧ ¬ab2(p, c1, c2) ∧ ist(c2, p) ⊃ ist(c1, p).

This gives nonmonotonic inheritance of ist in both from the subcontext to the supercontext
and vice versa. More useful is the case when the sentences must change when lifted. Then we
need to state that and every proposition meaningful in c1 is translatable into one meaningful
in c2. See §4 for an example.

4. A major set of relations that need to be expressed are those between the context
of a particular conversation and a subsequent written report about the situation in which
the conversation took place. References to persons and objects are decontextualized in the
report, and sentences like those given above can be used to express their relations.

5. Consider a wire with a signal on it which may have the value 0 or 1. We can associate
a context with this wire that depends on time. Call it cwire117

(t). Suppose at time 331, the
value of this signal is 0. We can write this

ist(cwire117
(331), signal = 0).

Suppose the meaning of the signal is that the door of the microwave oven is open or closed
according to whether the signal on wire117 is 0 or 1. We can then write the lifting relation

(∀ t)(ist(cwire117
(t), signal = 0) ≡ door-open(t).

The idea is that we can introduce contexts associated with particular parts of a circuit or
other system, each with its special language, and lift sentences from this context to sentences
meaningful for the system as a whole.

4

3 Entering and Exiting Contexts

Suppose we have the formula c0 : ist(c, p). We can then enter the context c and infer the
formula c : p. Conversely, if we have the formula c : p we can infer c0 : ist(c, p) by exiting

the context c. We don’t always want to be explicit about the sequence of all the contexts that
were entered, but the logic needs to be such that the system always exits into the context
it was in before entering. The enter and exit operations can be thought of as the push and
pop operations on a stack. In the logic presented in [BBM] the sequence of contexts that
has been entered is always explicitly stated.

We can regard ist(c, p) as analogous to c ⊃ p, and the operation of entering c as analogous
to assuming c in a system of natural deduction as invented by Gentzen and described in many
logic texts. Indeed a context is a generalization of a collection of assumptions, but there
are important differences. For example, contexts contain linguistic assumptions as well as
declarative and a context may correspond to an infinite and only partially known collection
of assumptions. Moreover, because relations among contexts are expressed as sentences in
the language, ist(c, p) allows inferences within the language that could only be done at the
meta-level of the usual natural deduction systems.

There are various ways of handling the reasoning step of entering a context. The way
most analogous to the usual natural deduction systems is to have an operation enter c.
Having done this, one could then write any p for which one already had ist(c, p). However, it
seems more convenient in an interactive theorem proving to use the style of Jussi Ketonen’s
EKL interactive theorem prover [KW84]. In the style of that system, if one had ist(c, p),
one could immediately write p, and the system would keep track of the dependence on c.
To avoid ambiguity as to where an occurrence of ist(, p) came from, one might have to
refer to a line number in the derivation. Having obtained p by entering c and then inferring
some sentence q, one can leave c and get ist(c, q). In natural deduction, this would be called
discharging the assumption c.

Human natural language risks ambiguity by not always specifying such assumptions,
relying on the hearer or reader to guess what contexts makes sense. The hearer employs a
principle of charity and chooses an interpretation that assumes the speaker is making sense.
In AI usage we probably don’t usually want computers to make assertions that depend on
principles of charity for their interpretation.

We are presently doubtful that the reasoning we will want our programs to do on their
own will correspond closely to using an interactive theorem prover. Therefore, it isn’t clear
whether the above ideas for implementing entering and leaving contexts will be what we
want.

Sentences of the form ist(c, p) can themselves be true in contexts, e.g. we can have
ist(c0, ist(c1, p)). In this draft, we will ignore the fact that if we want to stay in first order
logic, we should reify assertions and write something like ist(c0, Ist(c1, p)), where Ist(c, p) is
a term rather than a wff. Actually the same problem arises for p itself; the occurrence of
p in ist(c, p) might have to be syntactically distinct from the occurrence of p standing by
itself. Alternatively to reifying assertions we could use a modified logic; this approach was
investigated in [BBM].

5

4 Lifting Axioms

Lifting axioms are axioms which relate the truth in one context to the truth in another
context. Lifting is the process of inferring what is true in one context based on what is true
in another context by the means of lifting axioms. We treat lifting as an informal notion in
the sense that we never introduce a lifting operator. In this section we give an example of
lifting.

Consider a context above-theory, which expresses a static theory of the blocks world
predicates on and above. In reasoning about the predicates themselves it is convenient not
to make them depend on situations or on a time parameter. However, we need to lift the
results of above-theory to outer contexts that do involve situations or times.

To describe above-theory, we may write informally

above-theory : (∀xy)(on(x, y) ⊃ above(x, y))(1)

above-theory : (∀xyz)(above(x, y) ∧ above(y, z) ⊃ above(x, z))(2)

etc.

which stands for

c0 : ist(above-theory, (∀xy)(on(x, y) ⊃ above(x, y)))(3)

etc.

Constant c0 denotes an outer context. Section §8 has more about c0. In the following
formulas, we put the context in which the formula is true to the left followed by a colon.

We want to use the above-theory in a context blocks which contains the theory of blocks
world expressed using situation calculus. (We assume that situations are a disjoint sort,
and that the variable s ranges over the situation sort.) In the context blocks predicates on

and above have a third argument denoting a situation. Thus the context blocks needs to
relate its three-argument predicates on(x, y, s) and above(x, y, s) to two-argument predicates
on(x, y) and above(x, y) of the above-theory context. This is done by introducing a context
of a particular situation, spec-sit(s). A context spec-sit(s) is associated with each situation
s, such that

blocks : (∀xys)(on(x, y, s) ≡ ist(spec-sit(s), on(x, y))),(4)

blocks : (∀xys)(above(x, y, s) ≡ ist(spec-sit(s), above(x, y))),(5)

etc.

In order to get relations between on(x, y, s) and above(x, y, s), we will now import above-theory

into the blocks context. The importation of above-theory is expressed by the axiom

c0 : (∀p)ist(above-theory, p) ⊃ ist(blocks, (∀s)(ist(spec-sit(s), p))),(6)

asserting that the facts of above-theory all hold in the contexts associated with every situation.
The following relation between on(x, y, s) and above(x, y, s) follows from the above axioms.

6

Theorem (above):

blocks : (∀sxy)(on(x, y, s) ⊃ above(x, y, s)).

The example given is so small that it would be simpler to give the relations among the
three-argument predicates directly, but imagine that above-theory was much larger than is
given here.

We proceed to derive the above theorem.

Proof (above): We begin by assuming

blocks : on(x, y, s),(7)

asserting that block x is on block y in a specific situation s. Together with the universally
instantiated form of the ⇒ direction of formula 4 we get

blocks : ist(spec-sit(s), on(x, y)).(8)

Now we enter spec-sit(s) and get

spec-sit(s) : on(x, y).(9)

From (3) and (6) we conclude

c0 : ist(blocks, (∀s)ist(spec-sit(s), (∀xy)on(x, y) ⊃ above(x, y))).(10)

Therefore, by entering blocks we have

blocks : (∀s)ist(spec-sit(s), (∀xy)on(x, y) ⊃ above(x, y)).(11)

By universal instantiation it follows that

blocks : ist(spec-sit(s), (∀xy)on(x, y) ⊃ above(x, y)).(12)

Entering spec-sit(s) gives

spec-sit(s) : (∀xy)on(x, y) ⊃ above(x, y).(13)

By logic, formulas 9 and 13 give

spec-sit(s) : above(x, y).(14)

We can now either continue reasoning in spec-sit(s) or exit spec-sit(s) and get

blocks : ist(spec-sit(s), above(x, y)).(15)

Together with the universally instantiated form of the ⇐ direction of formula 5 we get

blocks : above(x, y, s).(16)

7

By the deduction theorem we can discharge the initial assumption to obtain

blocks : on(x, y, s) ⊃ above(x, y, s).(17)

Finally, by universal generalization it follows that

blocks : (∀sxy)on(x, y, s) ⊃ above(x, y, s).(18)

above

In this derivation we used a function giving a context spec-sit(s) which depends on the
situation parameter s. Contexts depending on parameters will surely present problems
requiring more study.

Besides that, the careful reader of the derivation will wonder what system of logic permits
the manipulations involved, especially the substitution of sentences for variables followed by
the immediate use of the results of the substitution. There are various systems that can be
used, e.g. quasi-quotation as used in the Lisp or KIF, use of back-quotes, or the ideas of
[McC79b]. Furthermore, the drafts of this paper have motivated a number of researchers
to develop logics of context in which the above would be a valid derivation; these include
[BM93, Nay94, AS, BBM]. However, at present we are more attached to the derivation than
to any specific logical system.

As a further example, consider rules for lifting statements like those of section 1 to one
in which we can express statements about Justice Holmes’s opinion of the Sherlock Holmes
stories.

5 Natural Deduction via Context

The formal theory of context can be used to represent inference and reason in the style of
natural deduction. This requires lifting axioms (or lifting rules) to treat the context which
a reasoning system is in as a formal object. If p is a sentence and we are in some context c,
we define a new context assuming(c, p) so that it validates the following rules:

importation c : p ⊃ q ` assuming(c, p) : q

discharge assuming(c, p) : q ` c : p ⊃ q

Note that these rules can be replaced by lifting axioms. Thus importation is replaced by

(∀cpq)(ist(c, p ⊃ q) ⊃ ist(assuming(c, p), q))(19)

To make the presentation simpler we write them in the rule form. An interesting rule which
can be derived from the above is

assumption ` assuming(c, p) : p

8

In analogy to the restriction to the rule of ∀ introduction in formal systems of natural
deduction, we will have to restrict the rule of universal generalization to ensure that the
variable being generalized does not occur free in any of the assuming(c, p) terms of the
current context.

To illustrate the rules we now give a natural-deduction style proof of the above theorem,
which was introduced in §4. This theorem involves the lifting of the theory of above into
the context of situation calculus. The proof should be compared to the Hilbert style proof
which was given in §4.

Proof (above): We begin with the ⇒ direction of formula 4

blocks : (∀xys)(on(x, y, s) ⊃ ist(spec-sit(s), on(x, y)))(20)

It follows by universal instantiation that

blocks : on(x, y, s) ⊃ ist(spec-sit(s), on(x, y))(21)

By the importation rule we get

assuming(blocks, on(x, y, s)) : ist(spec-sit(s), on(x, y))(22)

Therefore, by entering the spec-sit(s) context we get

spec-sit(s) : on(x, y)(23)

Now, from formulas 3 and 6 it follows that

c0 : ist(blocks, (∀s)ist(spec-sit(s), (∀xy)(on(x, y) ⊃ above(x, y))))(24)

By entering blocks we get

blocks : (∀s)ist(spec-sit(s), (∀xy)(on(x, y) ⊃ above(x, y)))(25)

By instantiating the universal quantifier over situations we get

blocks : ist(spec-sit(s), (∀xy)(on(x, y) ⊃ above(x, y)))(26)

Therefore, by propositional logic we have

blocks : on(x, y, s) ⊃ ist(spec-sit(s), (∀xy)(on(x, y) ⊃ above(x, y)))(27)

Therefore, by the importation rule we get

assuming(blocks, on(x, y, s)) : ist(spec-sit(s), (∀xy)(on(x, y) ⊃ above(x, y)))(28)

Now, by entering the spec-sit(s) context we get

spec-sit(s) : (∀xy)(on(x, y) ⊃ above(x, y))(29)

9

By logic from formulas 23 and 29 it follows that

spec-sit(s) : above(x, y)(30)

By exiting the spec-sit(s) context we get

assuming(blocks, on(x, y, s)) : ist(spec-sit(s), above(x, y))(31)

The ⇐ direction of formula 5

blocks : (∀xys)ist(spec-sit(s), above(x, y)) ⊃ above(x, y, s)(32)

By propositional logic we have

blocks : on(x, y, s) ⊃ (∀xys)ist(spec-sit(s), above(x, y)) ⊃ above(x, y, s)(33)

Together with the importation rule the above formula allows us to infer

assuming(blocks, on(x, y, s)) : (∀sxy)ist(spec-sit(s), above(x, y)) ⊃ above(x, y, s)(34)

By logic from (31) and (34) we get

assuming(blocks, on(x, y, s)) : above(x, y, s)(35)

Using the rule discharge it follows that

blocks : on(x, y, s) ⊃ above(x, y, s)(36)

Therefore, by universal generalization we obtain what was to be proved

blocks : (∀sxy)on(x, y, s) ⊃ above(x, y, s)(37)

above

In the above proof we have entered the context assuming(c, p) in a number of instances.
This creates an interesting example because it might not be obvious in which context the
term assuming(c, p) is to be interpreted. However, since the logic needs to keep track of
which contexts were entered in the process of reasoning, the answer becomes obvious: the
term assuming(c, p) will be interpreted in the next outer context (see §3 for discussion on
sequences of contexts).

10

5.1 Postponing Preconditions via assuming

We conclude by noting that the assuming function, as defined in this section, is also useful
for formalizing a number of other phenomena. Examine a naive formalism for reasoning
about action where the preconditions for flying are given by the formula

c : have-ticket(x) ∧ clothed(x) ⊃ can-fly(x).(38)

In common sense reasoning we want the ability to postpone dealing with the precondition of
being clothed. This can be done by considering a context which assumes that one is clothed
assuming(c, clothed(x)). By the importation rule and the formula 38 we get

assuming(c, clothed(x)) : have-ticket(x) ⊃ can-fly(x).(39)

Thus in the context assuming(c, clothed(x)) we do not need to consider the precondition of
being clothed in order to infer that one can fly.

Note that we are only developing an ontology for representing this phenomena, and are
not dealing with pragmatic issues like which context a reasoning system will start in, and
how the system will decide to consider a context making an additional assumption. In fact,
from a pragmatic viewpoint the above process might need to be completely reversed. The
reasoning system may realize that its current problem solving context c is making a particular
assumption p that needs to be discharged. Then it will need to consider a context c′ such
that c = assuming(c′, p).

The assuming function is also needed for representing discourse. In §7 we show how it is
used to handle replies to a query; in that section we call the assuming function “reply”.

6 Integrating Databases

We see the use of formalized contexts as one of the essential tools for reaching human
level intelligence by logic based methods. However, formalized contexts have shorter term
applications. In this section we deal with one short term application: we show how two data
bases, which were not originally intended to be used together, can be integrated by lifting
their contents into a wider context. We proceed with an example.

6.1 The GE, Navy, and Air Force Example

Here’s a hypothetical example. Imagine that the Navy, the Air Force and General Electric
have separately developed standards for databases containing facts about prices of jet engines
and parts. But these standards are not the same. Suppose that associated with each item
is a price. Suppose further

1. For GE, the price is a retail price not including spare parts.
2. For the Navy, the price is the Government’s purchase price including spare parts.
3. For the Air Force, the price includes additional inventory costs. It includes spare parts

but a different assortment than the Navy’s.

11

Now suppose that associated with each database are many programs that use the infor-
mation. For example, General Electric can compute the cost of equipment packages taking
into account discounts. The Navy can compute the economic ordering quantity for use when
supplies get low.

Suppose now that some plan requires that unexpectedly a certain item made by General
Electric is required in large quantity by both the Navy and the Air Force and deliveries and
purchases from various General Electric warehouses have to be scheduled in co-ordination.
The context in which the reasoning is done requires the lifting of various information from
the contexts of the separate databases to the reasoning context. In the course of this lifting,
the sentences representing the information are translated into new forms appropriate for the
reasoning context.

6.2 A Simple Formalization

In this simple case, assume that the Air Force and Navy data bases need to be updated on
the new General Electric prices. The GE database lists the list price, i.e. the price at which
GE is selling the engine. The Navy database lists the price which Navy will need to pay for
the engine and its assortment of spare parts, if it decides to use GE.

In order to reason with multiple databases, cps, an ad hoc context for reasoning about
the particular problem, may be required. The problem solving context cps contains objects
denoting the General Electric context cGE, the Navy context cN, and the Air Force context
cAF. This enables us to talk about facts which are contained in the corresponding databases.
If for example the GE database contains a fact price(FX-22-engine) = $3600K then the
sentence ist(cGE, price(FX-22-engine) = $3600K) is true in cps.

Different data bases might make different assumptions. For instance, prices of engines
in some contexts might or might not include spare parts or warranties. We need the ability
to represent this information in cps. Function spares, when given a product and a context,
returns the spares which the given context assumes necessary and thus includes in the price
of the product. For example, spares(cNAVY, x) is the set of spares that Navy assumes will
be included in the price of the product x. Function warranty, when given a product and a
context, returns the name of the warranty assumed for the product in the given context. For
example, warranty(cNAVY, x) is the name of the warranty which Navy assumes is included
in the price of the product x. In this note we are treating warranty in the same manner as
we would treat spare parts or additional optional features. It would be the responsibility of
another formalization to “understand” the warranty and give axioms describing the exact
obligations that GE has to its clients. Note that information about spares and warranties
assumed by the Navy will probably not be contained in the Navy data base. (Otherwise,
we would use value(cNAVY, spares(x)) rather than spares(cNAVY, x) to refer to the spares that
Navy assumes will be included in the price of the product x.) Rather, this information is kept
in in some manual. But for these data bases to be used jointly, the spares information needs
to be included; we assume that it is described declaratively in cps. Finally, the vocabulary
of cps also has a function GE-price, which to every object assigns its corresponding price in
dollars.

In the problem solving context cps we also represent the fact that GE lists engine prices

12

without any spares, while Navy assumes spare parts to be included in the price of a product.
This is done by lifting axioms, which define how the notion of price in different databases
translates into the problem solving context:

cps : (∀x)value(cGE, price(x)) = GE-price(x)(40)

cps : (∀x)value(cNAVY, price(x)) = GE-price(x) + GE-price(spares(cNAVY, x))+(41)

GE-price(warranty(cNAVY, x))

expressing that the price listed in the Navy data base is the price of the engine, some bag of
spares, and the particular warranty that are assumed by the Navy.

cps : (∀x)value(cAF, price(x)) = f(x,GE-price(x),GE-price(spares(cAF, x)),(42)

GE-price(warranty(cAF, x)))

where f is some function which determines the total price of an item and spares, also taking
into account the inventory cost. Note that f might not be precisely known, in which case
we might decide to only give some approximate bounds on f .

Now we work out an example. Assume that we are given the prices as listed in the GE
data base; i.e. the following formulas hold in cGE:

cGE : price(FX-22-engine) = $3600K(43)

cGE : price(FX-22-engine-fan-blades) = $5K(44)

cGE : price(FX-22-engine-two-year-warranty) = $6K(45)

Information about spares and warranties will not be found in the cGE data base and will
probably require looking up in some manual or description of the the data base. We need to
enter this information into the the problem solving context:

cps : spares(cNAVY,FX-22-engine) = FX-22-engine-fan-blades(46)

cps : warranty(cNAVY,FX-22-engine) = FX-22-engine-two-year-warranty(47)

Then we can compute the price of the FX-22 jet engine for the Navy. The following formula
is a theorem, i.e. it follows from the above axioms.

Theorem (engine price):

cNAVY : price(FX-22-engine) = $3611K

In order to compute this price for the Air Force, the inventory cost given by function f

would need to be known.

13

Proof (engine price): First we exit the cGE context thus rewriting formulas 43, 44, and
45 as

cps : value(cGE, price(FX-22-engine)) = $3600K(48)

cps : value(cGE, price(FX-22-engine-fan-blades)) = $5K(49)

cps : value(cGE, price(FX-22-engine-two-year-warranty)) = $6K(50)

From formulas 40 and 48 it follows that

cps : GE-price(FX-22-engine) = $3600K(51)

From formulas 40 and 49 it follows that

cps : GE-price(FX-22-engine-fan-blades) = $5K(52)

Therefore, using formula 46, we get

cps : GE-price(spares(cNAVY,FX-22-engine)) = $5K(53)

In a similar fashion, from formulas 40, 47 and 50 we can conclude that

cps : GE-price(warranty(cNAVY,FX-22-engine)) = $6K(54)

From formulas 51, 53, and 54 if follows that

cps : GE-price(FX-22-engine) + GE-price(spares(cNAVY,FX-22-engine))+(55)

GE-price(warranty(cNAVY, x)) = $3611K

Then, using formula 41 we can conclude that

cps : value(cNAVY, price(FX-22-engine)) = $3611K(56)

By entering cNAVY we get

cNAVY : price(FX-22-engine) = $3611K(57)

engine−price

In the above proof we are assuming that all constants denote the same object in all
contexts, i.e. that all constants are rigid designators. Consequently constants can be sub-
stituted for universally quantified variables by the universal instantiation rule. Generalizing
the proof is straight forward if we drop this assumption.

14

6.3 Formalization for Bargaining

Now assume that the air force database contains the price air force plans to pay for a product,
i.e. the price included in the budget. Like before, the GE database contain the list price,
which will probably be higher than the air force budget price. This formalization is suited
for use by some bargaining agents or programs. The bargaining agent for the air force will
through negotiation attempt to convince the GE agent to lower the GE list price to the air
force budget price (or some price that would be acceptable to the air force).

The bargaining agents will work in some problem solving context cps. This context con-
tains constants denoting the various data bases which will be relevant to the bargaining; in
our case these will be the General Electric context cGE, and the Air Force context cAF. Con-
text cps contains functions which represent the budget price and the list price of a product.
Function manufacturer-price, when given a context of a manufacturer and a product, returns
the price at which the product is offered for sale by the manufacturer; functions budget-price,
when given a context of a customer and a product, returns the price which the customer is
willing to pay for the product. Like in the previous example, cps can represent the spares
associated with an engine. Function spares, when given a product and an object, returns
the spares which the given context assumes necessary and thus included in the price of the
product.

The air force and GE will need to bargain in order to negotiate a price which is acceptable
to both parties. However, since unlike GE, the air force assumes that the price will include
a set of spare parts, the lifting axioms will be needed to adjust the prices in the two data
bases to ensure that both the budget price and the list price pertain to the same package.
The lifting axioms are:

cps : (∀x)value(cGE, price(x)) = manufacturer-price(cGE, x)(58)

cps : (∀x)value(cAF, price(x)) = budget-price(cAF, x) + budget-price(cAF, spares(cAF, x))(59)

The lifting axioms will enable us to derive the budget-price and manufacturer-price prices
in cps, both of which pertain to the engine only, excluding any spares. These can then be
used by the bargaining programs to negotiate a price and administrate a sale.

Note again the difference between this formalization and the previous one. In the previous
subsection the price function in both data bases referred to the price which was actually being
paid for a product. Therefore, the lifting axioms were used to directly infer the price in one
data base based on the price listed in another. In this example, on the other hand, given the
list price the lifting axioms can not be used to work out the budget price. The lifting axioms
simply ensure that both the list price and the budget price talk only about the engine, and
do not implicitly assume the inclusion of spare parts.

6.4 Treating value as an Abbreviation

It will be possible to define value as an abbreviation in a context language which contains
the ist . We first deal with the case where all contexts have the same domains. We define
value as an abbreviation:

value(c, x) = y ≡ (∀z)y = z ≡ ist(c, x = z)(60)

15

Eliminating the value abbreviation, the above formulas are equivalent to:

cps : (∀xy)ist(cGE, y = price(x)) ≡ y = GE-price(x)(61)

cps : (∀xy)ist(cNAVY, y = price(x)) ≡ y = GE-price(x) + GE-price(spares(cNAVY, x))(62)

cps : (∀xy)ist(cAF, y = price(x)) ≡ y = f(x,GE-price(x),GE-price(spares(cAF, x)))(63)

If the domains of all the contexts are not the same, then the above formulas are not
intuitively correct. Instead, a domain precondition needs to be added to all the formulas.
For example instead of formula 61, we would write

cps : (∀xy)(in(c, x) ∧ in(c, y)) ⊃ (ist(cGE, y = price(x)) ≡ y = GE-price(x))(64)

where in(c, x) is true iff the object denoted by x is in the domain of the context denoted by
c. 1

Note however, if we simply change the abbreviation of value to

value(c, x) = y ≡ in(c, x) ⊃ (∀z)(in(c, z) ⊃ (y = z ≡ ist(c, x = z)))(65)

then the axioms involving value (axioms 40-42 and 58-59) will still be true. In other words,
the previous formalizations remain unaltered. To verify this, note that substituting this new
definition for value (given in formula 65) into formula 40 gives us formula 64, rather then
formula 61.

We also need to assert that the problem solving context cps contains all the objects
present in the other contexts which are involved in the particular problem solving process.
In some outer context c0 we would write:

c0 : (∀c)involved-in-ps(c) ⊃ (∀x)(in(c, x) ⊃ in(cps, x)).(66)

In both cases mentioned above, the rules of entering and exiting a context for the value

function will follow from the general rules enter and exit for the ist .

7 Representing Discourse

Formal theory of context is needed to provide a representation of the context associated
with a particular circumstance. In this section we illustrate this by showing how our formal-
ism can be used to represent the context of a conversation in which terms have particular
meanings that they wouldn’t have in the language in general. We examine question/answer
conversations which are simply sequence of questions and answers. In this simple model we
allow two types of questions:

1The main implication connective in this formula will probably not be classical. However this is a technical
point which we address elsewhere.

16

propositional questions are used to inquire whether a proposition is true or false; they
require a yes or no answer. In the language we introduce a special proposition yes

which is used to answer these questions.

qualitative questions are used to find the objects of which a formula holds; in the language
we introduce a unary predicate answer which holds of these objects.

In order to know what is being communicated in a discourse, as well as reason about
a discourse in general, we need a way of representing the discourse. To do this in the
framework of the formal theory of context, we identify a new class of contexts, the discourse

contexts. Discourse contexts are not only characterized by the sentences which are true
in them but also by the intended meaning of their predicates, which might vary from one
discourse context to the next.

We represent a discourse with a sequence of discourse contexts, each of which in turn
represents the discourse state after an utterance in the discourse. Our attention is focused
only on discourses which are sequences of questions and replies: [q1, r1, q2, r2, . . . , qn, rn].
Thus, we can represent such a discourse with a sequence of discourse contexts:

[cd, query(cd, q
1), reply(query(cd, q

1), r1), . . .

. . . , reply(query(reply(· · · reply(query(cd, q
1), r1) · · · , rn−1), qn), rn)]

s.t. (i) cd
0 is some discourse context in which the initial question (q1) was asked; (ii) the

function query takes a question φ and some discourse context cd (representing the discourse
state before the question φ) and returns the discourse context representing the discourse
state after asking the question φ in cd; (iii) the function reply takes a reply φ and some
discourse context cd (representing the discourse state before before replying φ) and returns
the discourse context representing the discourse state after replying φ in cd. In order to
reason about the discourse we now only need the properties of the functions query and reply.
These will be made precise in the next subsection.

Since we are not concerned with solving the syntactic and semantic problems addressed
by the natural language community, we are assuming the system is given the discourse
utterances in the form of logical formulas. This assumption is in line with [McC90a]; in
McCarthy’s terminology we would say that the discourse has been processed by both the
parser and the understander to produce a logical theory. Note that the process of producing
this theory is not precisely defined, and it is not completely clear how much common sense
information is needed to generate it. It might turn out that producing such a theory requires
the solution of the problem we had set out to solve. But for the time being let us take a
positive perspective and assume the discourse theory is given.

Note that our simple model will not capture a number of other aspects of a discourse
state, as have been studied by computational linguists [GS86]. For example, we have com-
pletely ignored all pragmatic issues which are in fact considered central to discourse analysis.
Extending the notion of the discourse state is part of our plan for future research.

17

7.1 The Logic of query and reply

In this section we give the properties of the functions query and reply, which are central for
representing question/answer discourses. Since the query and reply functions are treated in
the style of situation calculus, we do not need to change our basic theory of context, but
simply give the axioms that formalize the two functions.

Intuitively, the query function will set up a context in which the reply to the question
will be interpreted. For example, the context resulting in asking some proposition p will
have the property that yes in that context will be interpreted as p. Thus query only changes
the semantic state of the discourse context. The reply function will do a simple update of
information: the formulas true in the context resulting in replying p in cd will be exactly
those formulas which are conditionally true on p in cd. Thus the reply function only changes
the epistemic state of the discourse context. We now make these notions more precise.

The following axioms characterize the functions query and reply.

interpretation axiom (propositional) if φ is a closed formula, then

ist(query(κ, φ), φ ≡ yes)

frame axiom (propositional) if φ is a closed formula, and yes does not occur in ψ, then

ist(κ, ψ) ⊃ ist(query(κ, φ), ψ)

interpretation axiom (qualitative) if x is the only variable occurring free in φ, then

ist(query(κ, φ(x)), φ(x) ≡ answer(x))

frame axiom (qualitative) if x is the only variable occurring free in φ, and answer does
not occur in ψ, then

ist(κ, ψ) ⊃ ist(query(κ, φ(x)), ψ)

reply axiom ist(reply(κ, φ), ψ) ≡ ist(κ, φ ⊃ ψ)

We proceed to illustrate the axioms and their use with an example.

7.2 Example: Air Force–GE Discourse

We examine the following hypothetical discourse taking place between the Air Force and
General Electric:

1. AF: Will you bid on the engine for the FX22?

2. GE: Yes.

18

3. AF: What is your bid?

4. GE: $4M.

5. AF: Does that include spares?

6. GE: Yes.

We transcribe the above discourse in our logic as a sequence of discourse contexts, s.t.

c1 = query(c,will-bid-on(engine(FX22)))

c2 = reply(c1, yes)

c3 = query(c2, price(engine(FX22), x))

c4 = reply(c3, answer($4M))

c5 = query(c4, price(x) ≡ ist(ckb, price-including-spares))

c6 = reply(c5, yes)

where c is the initial discourse context. To simplify presentation, in this section we take
price to be a predicate; in §4 we have illustrated how it can be treated as a function by using
value instead of ist .

7.3 Deriving Properties of the Air Force–GE Discourse

We now show some properties of the discourse which can be derived with our logic.

7.3.1 First Question: Propositional Case

The discourse begins with a propositional question. We show how they modify the discourse
state.

Theorem (c2): ist(c2,will-bid-on(engine(FX22)))

Proof (c2): Instantiating the first axiom for the propositional questions, we get

ist(query(c,will-bid-on(engine(FX22))),will-bid-on(engine(FX22)) ≡ yes)

which, by definition of c1, can be written as

ist(c1,will-bid-on(engine(FX22)) ≡ yes)

Instantiating the axiom for reply we have

ist(reply(c1, yes),will-bid-on(engine(FX22))) ≡ ist(c1, yes ⊃ will-bid-on(engine(FX22)))

and it follows from the two lines above that

ist(reply(c1, yes),will-bid-on(engine(FX22)))

which by definition of c2 we can write as

ist(c2,will-bid-on(engine(FX22)))

c2

19

7.3.2 Second Question: Qualitative Case

The reasoning for this qualitative question is similar to the propositional question.

Theorem (c4): ist(c4, price(engine(FX22), $4M))

Proof (c4): We begin with an instance of the first axiom for qualitative questions

ist(query(c2, price(engine(FX22), x)), price(engine(FX22), x) ≡ answer(x))

which, by definition of c3, can be written as

ist(c3, price(engine(FX22), x) ≡ answer(x))

Instantiating the axiom for reply we have

ist(reply(c3, answer($4M)), price(engine(FX22), $4M)) ≡

≡ ist(c3, answer($4M) ⊃ price(engine(FX22), $4M))

and it follows from the two lines above that

ist(reply(c3, answer($4M)), price(engine(FX22), $4M))

which by definition of c4 we can write as

ist(c4, price(engine(FX22), $4M))

c4

Due to the frame axioms, the conclusion established in the first question

ist(c2,will-bid-on(engine(FX22)))

also holds in context c4.

Theorem (frame): ist(c2,will-bid-on(engine(FX22)))

Proof (frame): We first instantiate the second axiom for qualitative questions to get

ist(c2,will-bid-on(engine(FX22))) ⊃

⊃ ist(query(c2, price(engine(FX22), x)),will-bid-on(engine(FX22)))

The two lines above imply

ist(query(c2, price(engine(FX22), x)),will-bid-on(engine(FX22)))

20

which, by definition of c3, can be written as

ist(c3,will-bid-on(engine(FX22)))

Now we apply the following instance of the reply axiom

ist(reply(c3, answer($4M)),will-bid-on(engine(FX22))) ≡

≡ ist(c3, answer($4M) ⊃ will-bid-on(engine(FX22)))

to get

ist(reply(c3, answer($4M)),will-bid-on(engine(FX22)))

which, by definition of c4, can be written as

ist(c4,will-bid-on(engine(FX22)))

frame

7.3.3 Third Question: Dealing with Ambiguity

We are assuming that the predicate price is ambiguous in the discourse contexts since it can
be ambiguously interpreted as either price-including-spares or as price-not-including-spares

in some knowledge base. In the third question the predicate is disambiguated for context
c6. This will allow us to prove that the GE bid on the FX22 engine is $4M including spare
parts. Note that we will have to state the above in the kb context because the discourse
contexts are not expressive enough to distinguish between the price including spares and the
price excluding spares (which in fact was the source of ambiguity).

Theorem (kb): ist(ckb,price-including-spares(engine(FX22),$4M))

Proof (kb): By reasoning similar to the first question, we can conclude

ist(c6, price(x, y)) ≡ ist(ckb, price-including-spares(x, y))

From the frame axioms we get

ist(c6, price(engine(FX22), $4M))

similarly to the frame derivation in the second question. Now the theorem follows from the
above formulas. kb

21

8 Transcending Contexts

Human intelligence involves an ability that no-one has yet undertaken to put in computer
programs—namely the ability to transcend the context of one’s beliefs.

That objects fall would be expected to be as thoroughly built into human mental structure
as any belief could be. Nevertheless, long before space travel became possible, the possibility
of weightlessness was contemplated. It wasn’t easy, and Jules Verne got it wrong when he
thought that there would be a turn-over point on the way to the moon when the travellers,
who had been experiencing a pull towards the earth would suddenly experience a pull towards
the moon.

In fact, this ability is required for something less than full intelligence. We need it to be
able to comprehend someone else’s discovery even if we can’t make the discovery ourselves.
To use the terminology of [MH69], it is needed for the epistemological part of intelligence,
leaving aside the heuristic.

We want to regard the system as being at any time within an implicit outer context; we
have used c0 in this paper. Thus a sentence p that the program believes without qualification
is regarded as equivalent to ist(c0, p), and the program can therefore infer ist(c0, p) from
p, thus transcending the context c0. Performing this operation again should give us a new
outer context, call it c−1. This process can be continued indefinitely. We might even consider
continuing the process transfinitely, for example, in order to have sentences that refer to the
process of successive transcendence. However, I have no present use for that.

However, if the only mechanism we had is the one described in the previous paragraph,
transcendence would be pointless. The new sentences would just be more elaborate versions
of the old. The point of transcendence arises when we want the transcending context to relax
or change some assumptions of the old. For example, our language of adjacency of physical
objects may implicitly assume a gravitational field, e.g. by having relations of on and above.
We may not have encapsulated these relations in a context. One use of transcendence is to
permit relaxing such implicit assumptions.

The formalism might be further extended to provide so that in c−1 the whole set of
sentences true in c0 is an object truths(c0).

Transcendence in this formalism is an approach to formalizing something that is done in
science and philosophy whenever it is necessary to go from a language that makes certain
assumptions to one that does not. It also provides a way of formalizing some of the human
ability to make assertions about one’s own thoughts.

The usefulness of transcendence will depend on there being a suitable collection of non-
monotonic rules for lifting sentences to the higher level contexts.

As long as we stay within a fixed outer context, it seems that our logic could remain
ordinary first order logic. Transcending the outermost context seems to require a changed
logic with what Tarski and Montague call reflexion principles. They use them for sentences
like true(p∗) ≡ p, e.g “ ‘Snow is white.’ is true if and only if snow is white.”

The above discussion concerns the epistemology of transcending contexts. The heuristics
of transcendence, i.e. when a system should transcend its outer context and how, is entirely
an open subject.

22

9 Relative Decontextualization

Quine [1969] uses a notion of “eternal sentence”, essentially one that doesn’t depend on
context. This seems a doubtful idea and perhaps incompatible with some of Quine’s other
ideas, because there isn’t any language in which eternal sentences could be expressed that
doesn’t involve contexts of some sort. We want to modify Quine’s idea into something we
can use.

The usefulness of eternal sentences comes from the fact that ordinary speech or writing
involves many contexts, some of which, like pronoun reference, are valid only for parts
of sentences. Consider, “Yes, John McCarthy is at Stanford University, but he’s not at
Stanford today”. The phrase “at Stanford” is used in two senses in the same sentence. If
the information is to be put (say) in a book to be read years later by people who don’t
know McCarthy or Stanford, then the information has to be decontextualized to the extent
of replacing some of the phrases by less contextual ones.

The way we propose to do the work of “eternal sentences” is called relative decontextu-

alization. The idea is that when several contexts occur in a discussion, there is a common
context above all of them into which all terms and predicates can be lifted. Sentences in
this context are “relatively eternal”, but more thinking or adaptation to people or programs
with different presuppositions may result in this context being transcended.

10 Mental States as Outer Contexts

A person’s state of mind cannot be adequately regarded as the set of propositions that he
believes—at least not if we regard the propositions as sentences that he would give as answers
to questions. For example, as we write this we believe that George Bush is the President of
the United States, and if we were entering information in a database, we might write

president(U.S.A.) = George.Bush.

However, my state of mind includes, besides the assertion itself, my reasons for believing
it, e.g. he has been referred to as President in today’s news, and we regard his death
or incapacitation in such a short interval as improbable. The idea of a TMS or reason
maintenance system is to keep track of the pedigrees of all the sentences in the database and
keep this information in an auxiliary database, usually not in the form of sentences.

Our proposal is to use a database consisting entirely of outer sentences where the pedigree
of an inner sentence is an auxiliary parameter of a kind of modal operator surrounding the
sentence. Thus we might have the outer sentence

believe(president(U.S.A.) = George.Bush, because . . .),

where the dots represent the reasons for believing that Bush is President.
The use of formalized contexts provides a convenient way of realizing this idea. In an

outer context, the sentence with reasons is asserted. However, once the system has committed
itself to reasoning with the proposition that Bush is President, it enters an inner context
with the simpler assertion

president(U.S.A.) = George.Bush.

23

If the system then uses the assertion that Bush is President to reach a further conclusion,
then when it leaves the inner context, this conclusion needs to acquire a suitable pedigree.

Consider a belief revision system that revises a database of beliefs solely as a function of
the new belief being introduced and the old beliefs in the system. Such systems seem inad-
equate even to take into account the information used by TMS’s to revise beliefs. However,
it might turn out that such a system used on the outer beliefs might be adequate, because
the consequent revision of inner beliefs would take reasons into account.

11 Remarks

1. Guha has put contexts into Cyc, largely in the form of microtheories. The above-theory

example is a microtheory. See [Guh91] for some of the details.

2. We have mentioned various ways of getting new contexts from old ones: by specializing
the time or place, by specializing the situation, by making abbreviations, by special-
izing the subject matter (e.g. to U.S. legal history), by making assumptions and by
specializing to the context of a conversation. These are all specializations of one kind
or another. Getting a new context by transcending an old context, e.g. by dropping
the assumption of a gravitational field, gives rise to a whole new class of ways of getting
new contexts.

These are too many ways of getting new contexts to be treated separately.

3. We have used natural language examples in this article, although natural language is
not our main concern. Nevertheless, we hope that formalizing context in the ways we
propose may be useful in studying the semantics of natural language. Natural language
exhibits the striking phenomenon that context may vary on a very small scale; several
contexts may occur in a single sentence.

Consider the context of an operation in which the surgeon says, “Scalpel”. In context,
this may be equivalent to the sentence, “Please give me the number 3 scalpel”.

4. ist(c, p) can be considered a modal operator dependent on c applied to p. This was
explored in [Sho91].

5. It would be useful to have a formal theory of the natural phenomenon of context,
e.g. in human life, as distinct from inventing a form of context useful for AI systems
using logic for representation. This is likely to be an approximate theory in the sense
described in [McC79a]. That is, the term “context” will appear in useful axioms and
other sentences but will not have a definition involving “if and only if”.

6. Useful nonmonotonic rules for lifting will surely be more complex than the examples
given.

24

Acknowledgments

The development of these ideas has benefitted from discussions with Tom Costello, Mike
Genesereth, Fausto Giunchiglia, R. V. Guha, Ian Mason, and Carolyn Talcott. Guha wrote
his thesis [Guh91] while this article was going through many versions as the ideas developed,
and the mutual influences cannot be specified.

This work was partly supported by DARPA contract NAG2-703 and ARPA/ONR grant
N00014-94-1-0775.

References

[AS] Giuseppe Attardi and Maria Simi. A formalization of viewpoints. Fundamenta

Informaticae. To appear. Also technical report TR-93-062 at the International
Computer Science Institute, Berkeley, California 94704-1105.

[BBM] Saša Buvač, Vanja Buvač, and Ian A. Mason. Metamathematics of contexts.
Fundamenta Informaticae. To appear.

[BM93] Saša Buvač and Ian A. Mason. Propositional logic of context. In Proceedings of

the Eleventh National Conference on Artificial Intelligence, 1993.

[GS86] Barbara J. Grosz and Candace L. Sidner. Attention, intention, and the structure
of discourse. Computational Linguistics, 12:175–204, 1986.

[Guh91] R. V. Guha. Contexts: A Formalization and Some Applications. PhD thesis,
Stanford University, 1991. Also published as technical report STAN-CS-91-1399-
Thesis, and MCC Technical Report Number ACT-CYC-423-91.

[KW84] Jussi Ketonen and Joseph S. Weening. EKL—an interactive proof checker: User’s
reference manual. Technical report, Computer Science Department, Stanford Uni-
versity, Stanford, California, 1984.

[McC79a] John McCarthy. Ascribing mental qualities to machines. In Martin Ringle, edi-
tor, Philosophical Perspectives in Artificial Intelligence. Humanities Press, 1979.
Reprinted in [McC90b].

[McC79b] John McCarthy. First order theories of individual concepts and propositions.
In Donald Michie, editor, Machine Intelligence, volume 9. Edinburgh University
Press, Edinburgh, 1979. Reprinted in [McC90b].

[McC87] John McCarthy. Generality in artificial intelligence. Comm. of ACM, 30(12):1030–
1035, 1987. Also in ACM Turing Award Lectures, The First Twenty Years, ACM
Press, 1987; and reprinted in [McC90b].

[McC90a] John McCarthy. An example for natural language understanding and the AI
problems it raises. In Formalizing Common Sense: Papers by John McCarthy.
Ablex Publishing Corporation, 355 Chesnut Street, Norwood, NJ 07648, 1990.

25

[McC90b] John McCarthy. Formalizing Common Sense: Papers by John McCarthy. Ablex
Publishing Corporation, 355 Chesnut Street, Norwood, NJ 07648, 1990.

[McC93] John McCarthy. Notes on formalizing context. In Proceedings of the Thirteenth

International Joint Conference on Artificial Intelligence, 1993.

[MH69] John McCarthy and Patrick Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine

Intelligence, volume 4, pages 463–502. Edinburgh University Press, Edinburgh,
1969. Reprinted in [McC90b].

[Nay94] P. Pandurang Nayak. Representing multiple theories. In Proceedings of the Twelfth

National Conference on Artificial Intelligence, 1994.

[Sho91] Yoav Shoham. Varieties of context. In Vladimir Lifschitz, editor, Artificial In-

telligence and Mathematical Theory of Computation: Papers in Honor of John

McCarthy. Academic Press, 1991.

This is Stanford University Technical Note STAN-CS-TN-94-13. It is available to WWW browsers at

http://sail.stanford.edu/buvac/formalizing-context.ps

and by anonymous FTP from sail.stanford.edu in buvac/formalizing-context.ps file. Other papers by the authors are available at http://sail.stanford.edu

and are also available by anonymous FTP. Latexed on November 7, 1994.

26

