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Abstract

(McCarthy 1997) has attracted responses defending modal logic
from Heinrich Wansing (Wansing 1998) and Joseph Halpern (Halpern 1999).
My criticism of modal logic in connection with AI is that modal logic,
at least as described in the literature, isn’t expressive enough for an
independently operating robot. It relegates to humans reasoning with
and about modalities that an independent robot will have to do for
itself.

The demand wasn’t sufficiently clearly expressed in (McCarthy 1997),
and perhaps consequently the responses don’t sufficiently speak to it.

Heinrich Wansing (Wansing 1998) and Joseph Halpern (Halpern 1999)
responded to (McCarthy 1997) which argued that modal logic was inade-
quate to meet the requirements for the treatment of modality in AI and that
formalizations of modality in coventional logic, e.g. first order logic, have
greater potential. Wansing and Halpern make many similar points, but the
ones I want to address are stated by Halpern in a more convenient form, so I’ll
concentrate on them. I have included more formulas and more explanations
of formulas than in (McCarthy 1997). Here are some considerations.
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1. Joseph Halpern (Halpern 1999) writes “McCarthy has argued that modal

logic is too limited for various purposes. I consider the extent to which

he is right.” I evidently did not make clear that my primary purpose
is to make a language suitable for representation of facts by a robot
acting independently with human level capability. This means that in-
formation often regarded as metalinguistic must also be available to the
robot. If possible worlds are important, the robot must reason about
possible worlds. For this modal logic is inadequate.

2. I agree with Halpern that the possible-worlds structure can sometimes
help illuminate arguments. (McCarthy 1978) uses possible worlds ex-
plicitly in the formal argument. On the other hand (Kraus et al. 1991)
infers non-knowledge using second order logic but neither modal logic
nor possible worlds.

3. I agree that the decidability of propositional modal formalisms is use-
ful, and robots should be able to use the decision procedures. The
procedures can also be applied to first order axiomatizations of the
same modalities. (Grädel et al. 1997) relates this to the decideability
of two variable first order logic.

4. I don’t agree with Halpern’s statement that common, i.e. joint, knowl-
edge is not expressible in first order logic. Halpern’s statement depends
on regarding common knowledge as a transitive closure of iterated
knowledge of the several knowers and requiring that the formalization
of this transitive closure be complete. This is not the best way to han-
dle common knowledge. (McCarthy 1978) treats common knowledge
by introducing virtual persons possessing the common knowledge of a
finite set of real persons (two or three persons in the examples of that
paper.) Since transitive closure is not completely formalizable in first
order logic, common knowledge as in my paper will not have all the
properties of transitive closure. However, it does have enough of the
properties to do the problems of the wise men and of Mr. S and Mr.
P.

I don’t know how to say whether that notion is adequate for other
uses of common knowledge in common sense reasoning. The notion
of common knowledge in that paper satisfies S5, and I now regard
that as a blemish to be fixed. The reason is that while the S5 prop-
erty of common knowledge is adequate for the problems treated in the

2



paper, it would make inconsistent a more powerful system that in-
cludes Peano arithmetic (or elementary syntax, to use the terminology
of (Montague 1963)). I want robots to be able to reason with ZFC,
which subsumes Peano arithmetic and to be able to assume that other
robots also know ZFC.

5. I propose that a robot be able to introduce new modalities as new
predicates. In logicians’ terminology, this changes the language but not
the logic. I have regarded introducing new modalities to modal logical
systems as changing the logic. Perhaps these are similar ideas, but
some interactive theorem provers for logic, e.g. Jussi Ketonen’s EKL,
allow operations that define new predicates. I don’t know whether
any modal verification systems allow the introduction of new modal
operators in the course of a proof. (Costello and Patterson 1998) gives
a system where all modal operators that could be defined in first order
logic can be defined by three new operators introduced in the system.

6. Knowing what. Halpern considers that putting knowing what directly in
the language is a “convoluted approach” and prefers treating knowing

what as a satellite of knowing that. I think treating knowing what

directly as knows(pat, Telephone(Mike)) corresponds more closely to
natural language usage than does Halpern’s

∃xKPat(telephone-#(Mike) = x).

It is merely not what modal logicians are used to. This corresponds to
the fact that in English, “Pat knows Mike’s telephone number” is more
natural than “There is a number concept X such that Pat knows that

Mike’s telephone number is X”. In the language of (McCarthy 1979),
this would be

(∃x)(phone-number(x)
∧k(pat, Equal(Telephone(Mike), Concept1(x))).

(1)

We have to make sure that Pat knows that Mike’s telephone number
is a certain number. In our system

(∃X)(k(pat, Equal(Telephone(Mike), X)) (2)
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is always true, since we can substitute Telephone(Mike) for X and get
k(pat, Equal(Telephone(Mike), T elephone(Mike))), which will be an
instance of a general theorem.

To avoid making Halpern’s (∃x)KPat(telephone-#(Mike) = x) a tau-
tology, the system of modal logic must have non-rigid designators, i.e.
constants that take on different values in different possible worlds, and
there must be a restriction on instantiation of bound variables to rigid
designators. Rigid designators have been controversial in philosophical
logic and presumably have disadvantages.

Writing KPat suggests that the knower argument of K is not ever in-
tended to be a variable over which we quantify, and Joe Halpern con-
firms this. But “Nobody knows the troubles I’ve seen” illustrates that
quantification over knowers is common in ordinary language and the
resulting sentences can themselves be the objects of knowledge, and
we want among the facilities for robot use of modality. Quite pos-
sibly quantifying over knowers can be added to modal logic, but the
decidability results for modal logic may not extend to such formulas.

I wrote concept1(x), to emphasize that other functions from objects to
concepts of them may be useful, e.g. concept2(x). (McCarthy 1979)
gives additional examples of how treating concepts as objects gives
flexibility.

Here are two of the examples.

¬knew(kepler, Composite(Number(Planets))). (3)

In (3), Planets is a concept of the set of planets, Number(Planets) is a
concept of the number of planets, and Composite(Number(Planets))
is the proposition that this number is composite. Note that capital let-
ters are used for concepts and for functions from concepts to concepts.
kepler denotes the person Kepler and not some concept of him, and
knew(kepler(. . .)) asserts that Kepler knew something. Since Kepler
presumably thought the number of planets was 7, he presumably did
not know that the number of planets is composite.

knew(kepler, Composite(Concept1(denot(Number(Planets))))), (4)

which use functions denot from a concept to the thing it denotes and
Concept1 going from a thing to a standard concept of it, both of these
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being partial functions. Assuming that the number of planets is 10, this
expresses the fact that Kepler knew that this number is composite.

The following sentence attributed to Russell is discussed by Kaplan: “I

thought that your yacht was longer than it is”. We can write it

believed(i, Greater(Length(Y ouryacht)),
Concept1(denot(Length(Y ouryacht)))).

(5)

where we are not analyzing the pronouns or the tense, but are using
denot to get the actual length of the yacht and Concept1 to get back a
concept of this true length so as to end up with a proposition that the
length of the yacht is greater than that number.

If we introduce belief(i,X) to denote what I believe the numerical
value of the denotation of the concept X, to be, we can write

belief(i, Length(Y ouryacht)) > length(youryacht), (6)

which is more straightforward but probably yet harder than the previ-
ous entities to express in modal form. The first part of the equation
answers the question “What did I think was the length of your yacht?”,
which might have the answer “40 feet”.

(McCarthy 1979) argues for using propositions and individual concepts
rather than strings of letters on the grounds that the same concept may
be denoted by different strings of letters, e.g. we may want “P and Q”
and “Q and P” to name the same proposition.

Informal language distinguishes between concepts of objects and ob-
jects themselves. Trying to avoid the distinction in formal languages
limits what can be expressed. (Frege 1892) and (Church 1951) make
these distinctions.

7. (McCarthy 1978), first actually published in (McCarthy 1990), treats
non-knowledge by formalizing possible worlds in first order logic, us-
ing an extended Kripke accessibility relation. A(w1, w2, person, time)
means that world w2 is accessible from world w1 for person at time.
Putting in time permits including the effects of learning in the formal-
ism. Thus the worlds accessible at time t+1 comprise the subset those
worlds accessible at time t in which the proposition learned is true.
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This approach using possible worlds expresses non-knowledge of the
value of an expression by asserting the existence of possible worlds in
which the expression has different values. For example, in the puzzle
of Mr. S and Mr. P we are told that initially Mr. S knows only the
sum of the two numbers.1 We have

(∀pair)(sum(pair) = Sum0 → (∃w)(A(RW,w,MrS, 0)∧pairfun(w) = pair)).
(7)

Here RW denotes the real world2, the quantification is over pairs of
numbers, sum(pair) is the sum of the numbers of the pair, Sum0 is
the sum told to Mr. S, RW is the real world, and pairfun(w) is the
pair of numbers associated with the world w.

Actually, we need another level of knowledge in order to say that ev-
eryone knows Mr. S knows only the sum. This makes the formula

(∀rw)(A(RW, rw, joint(MrS,MrP ), 0) →
(∀pair)(sum(pair) = Sum0 →

(∃w)(A(rw,w,MrS, 0) ∧ pairfun(w) = pair))).
(8)

1The three wise men puzzle is as follows:

A certain king wishes to test his three wise men. He arranges them in a circle so that

they can see and hear each other and tells them that he will put a white or black spot on

each of their foreheads but that at least one spot will be white. In fact all three spots are

white. He then repeatedly asks them, “Do you know the color of your spot?” What do they

answer?

The solution is that they answer, “No,” the first two times the question is asked and
answer “Yes” thereafter.

This is a variant form of the puzzle which avoids having wise men reason about how
fast their colleagues reason.

Here is the Mr. S and Mr. P puzzle:

Two numbers m and n are chosen such that 2 ≤ m ≤ n ≤ 99. Mr. S is told their

sum and Mr. P is told their product. The following dialogue ensues: Mr. P: I don’t

know the numbers.

Mr. S: I knew you didn’t know. I don’t know either.

Mr. P: Now I know the numbers.

Mr S: Now I know them too.

In view of the above dialogue, what are the numbers?
2—the best of all possible worlds—
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Here joint(MrS,MrP ) is the pseudo-person who has the joint knowl-
edge of Mr. S and Mr. P. The occurrence of the real world RW in (7)
is replaced by the variable rw.

If we understand the problem of Mr. S and Mr. P in terms of possible
worlds, so should the robot. Actually, it would be better to use some-
thing less grandiose than the full Stalnaker-Lewis notion of possible
world. Better would be possible worlds limited to the a context, e.g.
one associated with the Mr. S and Mr. P puzzle.

8. Halpern includes “In particular, although people have tried to capture

notions like intentions and desires using possible world, I am not con-

vinced that it is the best way to go; possible worlds is certainly not the

answer for all problems”. What concerns me about this sentence is
the possible implication that there will always be a person around to
decide what formalism to use. Our formalism for modality needs to be
expressive enough, so that we can imagine the robot deciding for itself
what formalism to use for a problem.

9. I haven’t yet been able to make a logical language including modality
that has the full capabilities that I consider needed for independently
thinking robots. However, it seems to require the ability to express the
change of what is known after learning, knowing what, allowing proofs
of non-knowledge and joint knowledge of groups of actors. It may also
have to be able to express facts about modalities as objects.

Summary and challenges.
1. Do the “Kepler knew . . . ” and “Your yacht . . . ” examples.
2. What about functions from objects to concepts of them?
3. How is a robot to reason with metalinguistic information, e.g. to

reason about possible world structures?
4. What about quantifying over knowers?
My general opinion is that keeping the mathematical structure of modal

logic has interfered with making it useful in AI and for applications, e.g. to
databases.
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