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Abstract

The computer game Lemmings can serve as a new Drosophila for Al research con-
necting logical formalizations with information that is incompletely formalizable in
practice. In this article we discuss the features of the Lemmings world that make it
a challenge to both experimental and theoretical Al and present some steps toward
formalizing the game using situation calculus.
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*Work partly supported by ARPA (ONR) grant N00014-94-1-0775 and partly done while the author was
Meyerhoff Visiting Professor at the Weizmann Institute of Science, Rehovot, Israel
!This document is reachable from the WWW page http://www-formal.stanford.edu/jmc/home.html.



Contents

1

2

Introduction

Description of the Lemmings Games

What Needs to be Formalized?

An Example of Lemming Play

Physics of the Common Sense Lemming World
The Problem of Formalization

Objects in Space in the Lemming World

7.1 Geometric Objects and Relations . . . . . .. ... ... ...
7.2 Geography of Gamel . . . . . . .. ... ... L.
7.3 Geography of Game7 . . . . . . . ... ... ... ...

Predicting the Future

8.1 Persistent Behaviors . . . . . ... . 0oL
8.2 Attachment . . . . . . . . .

Programs for Playing Lemmings

9.1 Planning . . . . . . . . ...
9.2 First Experiments with Lemmings . . . . ... .. ... ...
9.3 TreeSearch . . .. .. .. ... ... .. ... .. .. ...

10 Some Formulas for a Simple Lemmings Game

10.1 Next Steps . . . . . o o o o

11 Remarks

11.1 Nonmonotonic Reasoning . . . . . . . ... .. ... ... ..
11.2 Maybe projection isn’t all Logic. . . . . .. . ... ... ...
11.3 Causal Space and Restricted Situations . . . ... ... ...
11.4 Formalizing Stratagems . . . . . . . . ... .. ... .....
11.5 Agre and Chapman . . . . . . . . .. ... ... ... .....

12 References

12
15
16

17
17
19
19

21
24

24
25
25
26
26
27

28



1 Introduction

Scientific progress in any field benefits from “models” 2 that allow its phenomena to
be studied with a minimum of tedious technicalities and which provide a maximum of
scientific information for the work expended. Genetics has used the fruit fly Drosophila
since about 1910. The motivation for this is not to breed better fruit flies but is
associated with technical facts like it being possible to store a thousand fruit flies in a
bottle and the generation time being a few days. Al can benefit from having its own
simple “models”. Here’s what looks like a good one that will be useful for solving many
important problems in theoretical and experimental AI3

The computer game Lemmings (by Psygnosis Ltd.)[Psygnosis 93] provides a frame-
work for formalization of facts about concurrent processes at the level of human inter-
action with the processes, i.e. when the process with which the human interacts is only
partly known and runs too fast for the human to follow. Our examples are all taken
from the sampler Lemmings Jr.

The paper concerns using Lemmings as a model for the logical approach to Al
including both theoretical and experimental work, but other approaches may also find
it challenging and useful. The designers of Lemmings invented games that challenge
human ingenuity but keep within a limited lemming physics framework that models
an interesting part of the common sense informatic situation. We argue that Al needs
just that kind of challenge.

The problems presented by Lemmings are simpler than real-world problems in many
important respects. For example, Lemmings is deterministic. The same actions in
locally similar situations always have the same local effects. Variations are introduced
by limited human ability to repeat the times of actions precisely. However, this is often
unimportant.

While much can be learned from theoretical work on formalizing the facts about
the Lemmings world, getting the full benefit will probably require actual programs to
play the game. In principle, experimenting with programs in a domain where human
understanding is adequate should not be required. However, there is so much room for
wishful thinking about what facts have to be taken into account that the formalizations
are unlikely to be adequate unless they guide an actual program.

2 Description of the Lemmings Games

A Lemmings game is presented as a picture on the computer screen. The picture
contains two kinds of objects besides empty space.

2Biologists speak of a fruitfly or mouse model of a biological phenomenon. Here we can speak of a
lemmings model of scene parsing, etc.

3Alas, there is in 1994 good reason to write about the importance of basic research models “like a
missionary talking to cannibals rather than with a decent terseness and restraint”, to use the words of G.
H. Hardy [Hardy, 1937].



solid-objects These include surfaces on which lemmings can walk, cliffs that can
be climbed or from which lemmings can fall, hazards like flames or water that
kill lemmings that enter them, bridges built by lemmings. Objects other than
lemmings do not move, although they may be damaged by explosions.

lemmings There are ten kinds of lemmings. Each is represented by a characteristic
picture of a man about 10 pixels high.

There is a lemming source from which lemmings are emitted until the quota for the
game is reached. There is a goal or lemming sink. The object of the game is to get a
specified fraction of the lemmings to the goal. If the player doesn’t succeed, he gets to
try the game over.

All lemmings are initially emitted as walkers. Subject to certain restrictions, the
player may designate any lemming as having one of the 9 qualities other than walker.

Here are the capabilities of the different kinds of lemming.

walker Walkers walk either to the left or to the right at a steady pace on the
horizontal or on moderate slopes. They cannot stand still. When a walker comes
to a wall it reverses. When it comes to a cliff it falls off. If the fall is from too
great a height it dies, i.e. disappears from the scene and therefore doesn’t add to
the score.

climber Climbers behave like walkers, but when one reaches a wall it climbs it.
floater Floaters behave like walkers but can safely fall from any height.

bomber When a lemming is designated a bomber, there is a 5 second countdown,
and then it explodes, removing itself and all material from a small circular neigh-
borhood of its location. Explosions do not affect other lemmings.

blocker When designated as a blocker, a lemming stands still until its status is
changed by exploding it or otherwise changing its status. Walking lemmings are
reflected from blockers. Its status cannot be changed by redesignating it.

builder When designated a builder a lemming starts building a bridge diagonally
upward in the direction it was walking. The slope is 1/2. Building continues for
12 steps or until the bridge hits something. Lemmings walking to a bridge in the
same direction the bridge is being built climb the bridge. A lemming coming to
the end will fall off.

basher When a lemming comes to a wall and is designated a basher, it digs a
horizontal hole.

miner A miner is like a basher except that the hole is diagonally downward.

digger A digger is like a basher except that the hole is vertically down.

The above description does not fully describe the behavior of lemming, e.g. how
deep a hole has to get before it traps walkers. Properties like this are consequences of



the lemming program, are not described in the manual and are imprecisely learned by
experience.

The game file bought from Psygnosis contains a number of opportunities to play
(10 in the sampler and 120 in the original full version). We call each of them a game.
The games are organized into levels of increasing difficulty, but we won’t use the word
level that way; instead we use it in its geometrical sense. Each sequence of actions by
the user and the program is called a play of the game.

3 What Needs to be Formalized?

Here are some of the phenomena of playing Lemmings that are shared by real time,
real world problems and which are still not well treated in Al systems.

1. A person playing Lemmings is dealing with a process that runs too fast to be fully
observed. No-one can follow the motion of 5 lemmings, let alone the 80 common
in some levels. Actually, two lemmings is often too much if their images overlap.

2. The laws of motion of the lemming world are quantitative and are characterized
by the computer program. However, the player’s knowledge of them is qualitative
and partial.

3. When the player looks at a lemming scene, he initially extracts into sentences
only part of the information he may eventually use to make his decisions. Other
information remains in the scene to be used if wanted. This illustrates the partial
truth of Herbert Simon’s slogan “The world is its own best model”. The world is
its own most comprehensive model but often not its own most intelligible model.

4. The player’s knowledge of a particular situation is partial. Important parts of
the scene are often out of sight.

5. There are usually too many lemmings in the scene for them all to be individuated
in the player’s mind. He has to refer to groups of lemmings—even groups whose
composition changes.

6. Each Lemmings game has a its own geometry, and the scene must be appropri-
ately parsed into regions of tactical significance, e.g. regions whose points are
all accessible by walkers. Digging holes and placing blockers both change the
effective division into regions.

7. Nevertheless, successful play also requires that important features of the scene be
verbalized and that plans be made. Projection of the effects of carrying out plans
is done in a verbal (for computers, logical) language.

8. It is possible to learn from experience and try again. Here Lemmings is easier
than the real world, because the exact initial situation is repeated when ever a
play is restarted. Moreover, Lemmings is deterministic. The same sequence of
actions will always have the same effects.



People formulate in natural language facts about the Lemmings world. We can
expect to devise formal tools of equal power. Besides facts, people tell each other
lemming stratagems, both local and global. We will not try to formalize the physical
skill of making several moves accurately and in quick succession. In the actual game,
vigourous use of the pause facility can avoid much of the need for practicing fast
reactions.

4 An Example of Lemming Play

At one stage in Game7 in Lemmings Jr. the way I first solved it, the situation can be
described as follows. See Figure [?].

All but one of the living lemmings are in two groups. Some of the lemmings in
each group may be still pouring out of a lemming source, but once out the lemmings
in each group are bounded by a pair of blockers. These lemmings will go back and
forth between the blockers until the player does something about it. In this description
nothing is said about the individual lemmings in the two groups. However, when we
later give a special role to a lemming in each group, the aggregation changes.

The remaining lemming has parachuted to the lower level and is building the bridges
needed for all the lemmings to reach the goal. When this lemming has built the bridges,
it will vanish into the goal. Then the player starts a random lemming in each group
digging. Eventually each group will fall through to the lower level and march back and
forth between barriers. One of these lemmings will be set to building a bridge over
the leftmost barrier. When this is done all the remaining lemmings will pass over the
barrier and over the bridges built earlier and on to the goal.

The beginning of this game requires more consideration of parallel processes. The
first lemming out of the left source is made into a blocker to prevent other lemmings
from falling into some water. The second lemming is made into a parachutist and will
jump down to build bridges. The third lemming is made into a blocker immediately
after it passes the left lemming source after being reflected by the blocker. While all this
is being completed, lemmings are coming out of the rightmost source and marching
to the right. As soon as the player finishes the tasks on the left he makes the lead
lemming on the right into a blocker so as to keep the lemmings marching to the right
from reaching something that will kill them. After the rightmost blocker has been
installed a left hand blocker for the right hand group is put in place to the left of the
right hand lemming source. There is now plenty of time for bridge building.

In the meantime the parachutist is safely marching back and forth between two
barriers. He needs to build a bridge over the left barrier, but he cannot reach high
enough on this barrier if he starts toward it. Instead he must build towards the right
barrier starting from a point that will end a bridge at the right height. Too high and
he will go over the right barrier, which isn’t wanted. At the right height, when he
reverses he can be made to build a bridge toward the left barrier starting at the top of
the bridge he has just built. This will get him over the left barrier. After that he must



build a bridge over a lemming trap and another bridge up to the slope leading to the
goal.

Finally, a lemming in each group is made into a digger. As the hole it digs gets
deeper all the lemmings fall into it. Finally it breaks through the ceiling of the lower
level, and all the lemmings fall down and can march to goal over the bridges that have
been built.

One more tactical fact. All the remaining lemmings from the two sources must be
allowed to fall into the holes being dug before the diggers are allowed to break through
the ceiling of the lower region. Otherwise, some lemmings will fall through the hole
and down to the lower level in one fall, and this will kill them.

The four lemmings used as blockers cannot be saved, and it is convenient to blow
them up when the rest of the work has been done.

The above description is accurate for the way I did it then and indicates the kinds
of formalizations that my old method required. There are better ways of solving that
game, and they require formalizations of different facts about the lemming world and
different facts about the specific situations.

5 Physics of the Common Sense Lemming World

The real physics of the lemming world is embodied in the Psygnosis program for playing
the machine side of lemming games. Presumably there is a general lemming mover, and
the designers of particular games build structures with pictures glued onto them. Let’s
call it the lemming interpreter, since it also interprets the actions of players. These
actions consist almost entirely of designating particular lemmings as having powers
selected from the list of 9 possibilities.

However, the human player doesn’t know the lemming interpreter, and it wouldn’t
do him much good if he did. What the human knows is the common sense physics of the
lemming world. Our goal is to find an epistemologically adequate [McCarthy and Hayes, 1969]
way of expressing this physics. Epistemological adequacy requires that the facts that
are actually observable be expressible and that the general facts giving the effects of
actions be expressed in a way that makes the observations useful.

Here are some aspects of the common sense physics of the lemming world.

1. Lemmings move to the right or left and sometimes climb. I suppose lemmings
cannot stand still except for blockers and have only one possible speed. Players
use this fact in order to time explosions. If a lemming is triggered while at place
x to explode 5 seconds later at place y, triggering at x will always result in an
explosion at y.

2. Except for blockers, lemmings don’t interact with each other, e.g. they interpen-
etrate rather than collide.

3. The lemming world has kinematics but apparently not dynamics. Thus the pro-
gram uses velocities but not forces and accelerations. Our own projections of



plans is rarely even kinematic but merely geometric. By non-kinematic I mean
that the velocities of the lemmings are not used in projection.

4. Lemmings fall at constant velocity but are destroyed if they fall from too great a
height.

5. Bridges are infinitely strong and don’t break under the weight of any number of
lemmings.

6. Explosions kill only the lemming that has been told to explode. Others are
unharmed even if they are within the explosion zone. Structures that seem to
have been supported by structure that is destroyed do not collapse but “hang in
the air”.

7. There seems to be no random element in lemming games except that randomness
coming from the human player. As is usual in sports, this permits the human to
learn precise procedures from repeated plays of a game. Thus he can learn the
best place to start a bridge.

8. Lemming time is sometimes important. For example, a digger needs a certain
amount of lemming time before the hole is deep enough to trap other lemmings.
Before that, a walker falling into the hole will climb on out of it. On a larger
scale, the total lemming time available for a game sometimes affects strategy.

6 The Problem of Formalization

The Lemmings player cannot succeed only by reacting directly to the current situation.
He % must plan ahead, often to the end of the game in which the situation will be very
different from the situation when the plan is made. We propose to do this by formalizing
the relevant facts in logic and projecting by logical reasoning. I can’t prove there is no
other way of doing the projection.

Here are some requirements for projection.

1. The ontology (set of entities over which variables range) of the Lemmings world
includes lemmings, sets of lemmings, regions, lemming traps, bridges, events in-
cluding actions, situations, fluents and others. I suppose we should include in the
ontology the predicate and function symbols we shall need in the formalism.

2. The events that create, destroy and transform the different kinds of object need
special treatment.

3. There must be names for sets of lemmings determined by some properties without
the user having to know particular lemmings or even how many there are in the
set. Naturally, sets with one element play a special role.

4The pronoun “he” embraces women, men and robots.



Maybe the only kind of lemming that has to be treated in sets is walker. Others
can be treated individually, because only a few can exist at a time. What is likely
to be interesting is the set of walkers in a region. The events that happen to sets
of walker as sets need to be distinguished, e.g. a set of walkers can fall into a
hole. If each walker in a set falls into a hole, then the set falls into the hole. (If
you like old jargon, falling into a hole is an intensive property like temperature.)
However, we should be able to draw conclusions about what happens to a set of
lemmings without always having to reason about its members. The cardinality
of a set is important when a certain resource, e.g. the number of lemmings that
can be designated as climbers, is limiting.

4. Natural language discussion of Lemmings suggests that we provide for fluents de-
noting continuous action, e.g. we should be able to say holds(walking(l, c0, R), s),
meaning that lemming [ is walking to the right in region c0 in situation s. We will
also want to say holds(walking2(l,c0), s), omitting the direction. The former is
stopped by encountering a wall, and the latter is not stopped by encountering a
wall but is stopped by [ becoming a digger or falling into a hole dug by a digger.

5. There must be a way of dealing with parallel processes. “While I am making
group A of lemmings do this, group B is doing that.”

6. Counterfactuals are used in human reasoning about Lemmings, e.g. “if I had one
more bridge-builder I could ...”.

The formalism must be elaboration tolerant. A person plays Lemmings with an
incomplete knowledge of the properties of the kinds of lemmings and their interaction
with features of the scene. An adequate formalization has the property that it can be
elaborated to take into account new phenomena by adding statements rather than by
completely redoing it.

7 Objects in Space in the Lemming World

Space in the lemming world is two dimensional. Nevertheless, an epistemologically
adequate representation of space and objects for the Lemmings world requires features
that go beyond what has been treated in the Al literature.

The screen in the Lemmings world is a pixel map. Like all modern computer games
it uses colors, but the literature says Lemmings is playable on a gray scale display. We
suppose this pixel map is accessible to a program that plays the game. To play the
game it also needs the ability to imitate moving and depressing the mouse. There are
keyboard shortcuts for some of the mouse actions, but we ignore them, because we are
not trying to formalize human speed of action.

The problem for Al is that a human player does not decide what to do operating
directly from the pixel map. Instead the human considers the screen as divided into



regions, some of which are chambers consisting of empty space that can contain lem-
mings and possibly other objects and some of which are solid material. Some of the
solid material can be turned into space by digging. Separated regions are sometimes
combined when lemmings build bridges.

Human players do not convert the picture into an internal form from which all deci-
sions are made without further reference to the picture. Information from the picture is
put into mental forms that are not well understood physiologically or psychologically,
and decisions about what to do involve repeated reference to the picture. In particular,
one often looks at the details of particular areas of the scene or puts newly relevant
global features into the mental model. On the other hand, important facts about the
picture can be internalized well enough so that I player can get a new idea about how
to win while out of sight of the game.

We claim that these aspects of the human way of handling visual information are not
just peculiarities of humans. Their main aspects are features of what we have called the
common sense informatic situation [McCarthy, 1989]. Computer programs operating
in the real world, e.g. controlling mobile robots, also face the common sense informatic
situation. This is characterized by incomplete information about the situation itself
and incomplete information about the laws that determine the effects of actions.

Therefore, we plan that a Lemmings program will parse the scene into a collection
of regions and relations among them. The initial parsing will be later extendable by
further reference to the pixel map. Like the human the program will use the scene as
its own most comprehensive model, although not always its most intelligible or useful
model.

The parsing therefore has two unusual aspects.

1. The parsing is not intended to be conclusive. The parser may be asked to get
more detail about something it returned previously.

2. The parser looks for common simple regions which it may have to elaborate later
rather than having a universally applicable scheme for parsing anything.

3. The parser gives names to features it finds and generates sentences characterizing
them. These sentences are later used by reasoning programs that decide what to
do.

The simplest kind of region may be called a chamber. The simplest kind of
chamber has an essentially horizontal floor and walls at each end that reflect
walkers.?

In section 8, page 12, we will discuss actions and events using situation calculus.
S0 stands for the situation when a particular game called Game0 starts. Game0 is a

SWithin regions the horizontal location of a position may be important. For example, it usually matters
where a bridge is started within a region. I remember positions by irregularities in color or relief. Should we
be purist and require this of programs, or should we let them use co-ordinates?

10



simplification of the first game in Lemmings Jr. There is only one lemming. See figure
[?].

A simple chamber will be rectangular on the screen with walls at both ends. We
make c0 a simple chamber in S0 and can rely on persistence to keep it a simple chamber
in §2 and beyond. This would be used in planning to solve Game0. Alternatively, if
we are actually playing Game(O, we can observe that c0 is a simple chamber in S2.
This requires a mechanism for associating names with features of the picture and with
situations depicted on the screen. We haven’t decided how to do this yet.

Consider chambers which confine lemmings until something is done about it. They
are bounded by simple closed curves, but that high level of generality isn’t the common
sense way of thinking about them. One could suppose that chambers in the lemming
world are a subclass of the interiors of simple closed curves and try to formalize a
suitable subclass. This is a bad idea, because we haven’t seen all the chambers Psyg-
nosis Ltd. has chosen to use, and they are likely to invent new ones with each new
lemming variant they market. Their artists draw the chambers and the regions that
surround them according to the requirements of the game designers and their artistic
taste. These drawings are then digitized. No human player can represent a digitized
screen pixel by pixel, and our formalism can’t do this either.

Instead we start with simple figures and elaborate them. The simple chamber is one
of these starts. A program that reasoned about the game would observe the screen of
Game0 and recognize the upper chamber as a simple chamber and give it a name. In
Game0, the floor of 0 is not entirely even, but these surface rills make no difference. It
doesn’t matter where [0 digs its hole. In other lemming games it does make a difference.
For example, it might have been necessary in Game0 to dig in a low place in order that
the lemmings should not fall too far.

We propose to handle unevenness by allowing additional statements about chambers
that have been identified as simple chambers. Complete descriptions of surfaces are not
required, but relevant observations may be expressed. Perhaps this is a form of belief
revision, e.g. the player formerly believed the chamber was simple and has changed hsi
mind; some of the considerations advanced in the study of belief revision might then
apply. Another way of handling this idea is to say that c0 is a certain kind of simple
chamber and express the unevenness in describing what kind.

We also will handle the chamber with the digger’s hole by elaborating the simple
chamber description. This will be belief update rather than belief revision.

We can implement the above using a notion of chamber type, or more generally,
type of lemming region. simple-chamber would be the type that is instantiated by
c0. at right-end, lemming-sink, simple-chamber) is is instantiated by c1. (We are not
committed to this particular notation for elaborating simple figures.) We need types
in the formalism and not just individual regions, because we need to make new types
by elaborating simpler ones, e.g. we make a chamber with the lemming sink at one
end by elaborating simple chambers.

11



7.1 Geometric Objects and Relations

Here are some useful geometric objects and relations.

1.

Two dimensional objects—regions including chambers. We have already discussed
them.

One dimensional objects—segments and walls. A segment is a surface over which
lemmings can walk. Mostly we are concerned with segments bounded by walls or
drop-offs or other impediment to walkers. However, segments bounded by being
above a hill at a lower level may need to be an object because digging in that
segment has a different result than digging elsewhere.

On walls useful segments are bounded by overhangs as well as floors and ceilings,
because climbers can’t climb overhangs.

. Bridges and segments of bridges require special treatment, because they are dy-

namic until completed. Even when it is complete, it is sometimes necessary to
break a bridge into two segments using a digger.

. The adjacency relations and containment relations among geometric objects are

used.

7.2 Geography of Gamel

The basic representation of a Lemmings scene is the pixel map provided by the Lem-
mings program. However, additional representations are needed for the following pur-

poses.

1. Prediction of what will happen. When a person does it, the person does not

generate an new pixel map. To do that the person would need to be able to
simulate the Lemmings program, and we can’t do that. Apparently prediction is
based on a representation of scenes simple enough for a person to update.

2. Planning a strategy.

[the actual geography to be provided]

7.3 Geography of Game7

[to be provided]

8

Predicting the Future

Prediction is difficult—especially of the future.

We use situation calculus.

12



holds(p, s) means that the proposition (i.e. propositional fluent) p holds in situation

value(exp, s) is the value of the expression exp in situation s.

F(p) is the propositional fluent that proposition p will hold in the future. F is
a reified temporal logic operator. We usually omit parentheses for functions of one
argument so that F'(fluent(p)) would be written F' fluent p.

next(p, s) is the next situation after s in which p holds. It is related to F' by the
axiom

holds(F p,s) D holds(p, next(p, s)). (1)

The function F plays the role of a temporal logic future operator. next(p, s) denotes
the next situation after s in which p holds. We intend to say nothing about the value
of next(p, s) when F' p doesn’t hold.

[An alternative is to regard next(p,s) as an individual concept as discussed in
[McCarthy, 1979b]. We would then write

exists next(p,s) D holds(p,next(p, s))

as the axiom.|
We also have a conditional future function F’ p. The intent is that it predicts that
p will hold if nothing to prevent it happens. There will be an axiom of the form

holds(F' p, s) A (nothing prevents p) D holds(F p, s). (2)

It isn’t yet clear how to write the condition (nothing prevents p).

Here is one way.

What will surely occur is any p such that F’(p,s) and such that there is no p
occurring earlier and preventing p. Therefore, we have

/

F'(p,s) N(Vp')=(p' # pAF'(p',s) ANtime(p', s) < time(p, s) A prevents(p’, p)) D F(p, s)

3)

We can put this in a form that is less explicit about time, namely

F'(p,s) A (VP )=(p" # p AN F'(p', 5) Aprecedes(p', p, s) A prevents(p',p) O F(p,s) (4)

Another possibility is to consider the fluents p as having associated times or at least
a temporal order. This makes them richer objects than we have previously taken them
to be. The equations then become

F'(p,s) N(vp)~(p' #pAF' (', s) ANtime(p') < time(p) A prevents(p’,p) D F(p,s) (5)

13



and

F'(p,s) AN(Vp')=(p' #p A F'(p,s) Aprecedes(p’,p) A prevents(p’,p) D F(p,s). (6)

Probably the basic inference task is predicting what happens in a situation when
there is no intervention. This is just predicting what would be observed by running
the program, but predictions used for planning need to be done in an epistemologically
adequate way, i.e. using only the information that would be available to a human
player. The result will be qualitative, sometimes uncertain and sometimes incorrect.

The basic fact about lemmings walking can be formulated in first order logic as
follows.

holds(rightist 1, s)
holds(at(l,pl),s)
holds(
holds(on(p2, sur facel)
holds(to-the-right-of (pl, p2, sur facel), s)
—(3zx)holds(prevents-walk(x, p1, p2), s)
D
holds(F at(l,p2),s), (7)

on(pl, sur facel)

> > > >

where

holds(prevents-walk(x,pl, p2), s) = prevents-walkl(x, pl, p2, sur facel, s) (8)

and

(3p")(holds(between(pl, p', p2, sur face), s)
A holds(at(z,p'), s)
A holds(stops-walkers x, s)
D)
prevents-walkl(z, pl, p2, sur face, s). 9)

We have made prevents-walk a term so it can be an argument of holds, whereas
prevents-walk] is a predicate so it can be circumscribed. Maybe there will be some
way to get rid of this bureaucratic complication.

We would circumscribe the predicate prevents-walkl, and if there were no obstacle,
we would be able to infer that lemming [ would indeed reach point p2.
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Additional phenomena that might prevent walking to a destination are to be treated
by adding sentences whose conclusion is prevents-walkl(x, pl, p2, sur face, s), i.e. the
conclusion of (9).

The above equations are unpleasantly long, and in more complicated cases might
get quite a bit longer. In dealing with situations that actually arise in playing a game,
these equations would be paralleled by a program that would establish that lemming [
would reach p2 in the concrete situation. In subsection 8.2 we discuss how a program
can be connected to a predicate or function in such a way that when it is necessary to
reason logically about the predicate applied to constant arguments the program can
be used to get the value. We call this attachment of the predicate to the program. It
is a special case of partial evaluation.

We might hope to use program in more abstract cases, e.g. thinking about hypothet-
ical situations, like “if I had a blocker there ...”. Constant symbols and construction
functions would be needed to construct the a representation of the hypthetical situa-
tion itself and the other constants on which the program would operate. Presumably
the hypthetical situations would be objects in the sense of object-oriented languages,
e.g. CLOS.

However, only equations retain elaboration tolerance, e.g. permit the introduction
of new lemming properties by making an assertion.

8.1 Persistent Behaviors

Tom Costello [?] has proposed generalizing the notion of persistence. Instead of a fluent
persisting, he proposes that a fluzion (a further borrowing from Newton) persists. A
fluxion is a function of time. The following is an adaptation of his idea.

Consider a lemming walking. Consider the following formulas:

occurs(start walking, s) D holds(walking, s) (10)

and

continues(walking, s1, s2) D value(x, s2) = value(x, s1) + v(time(s2) — time(sl)),
(11)
where v is the velocity of the lemming, and we have the definition

continues(p, s1,s2) = (Vs)(s1 < s < s2 D holds(p, s)). (12)

walking is thus treated as an ordinary persistent fluent in (10). Its effect on the
position of the lemming is given by the auxiliary formula (11).

A persistent fluent continues to hold until something stops it, and then it ceases to
hold.
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persistent p A holds(p, s) A\ holds(F stops p, s)
D)
—holds(p, next(stops p, s))
A(Vs")(s < §' < next(stops p,s) D holds(p, s")) (13)

For completeness, we should also include

persistent p A holds(p, s) A =holds(F stops p,s) D (Vs')(s < s D holds(p,s’)), (14)

but there isn’t much that lasts forever.

8.2 Attachment

A computer program doing logical inference need not compute 53 + 18 by deriving
53 + 18 = 71 from the laws of arithmetic. Instead it should take advantage of the
computer and get this result from the computer’s arithmetic. This is accomplished in
various interactive theorem provers by attaching a program, in Lisp for instance, to the
function name, in this case 4. The following considerations apply.

1. As a proof step, the prover is given an expression to evaluate, e.g. the command
is

evaluate “53 + 177. (15)

The result of the evaluation is a sentence, e.g. 53 + 17 = 71, which can then be
used for further inference like any other logical sentence.

2. The most straightforward evaluators can only be given ground expressions to
evaluate. Fancier ones can do algebraic and logical simplification of expressions
involving variables. For Lemmings we contemplate only the ground case.

3. For Lemmings the most important expressions to evaluate will involve the scene
as an argument.

4. The attachments are done by the builder of the system, and therefore have the
same inferential status as the axioms. In principle, one might use a program
verification system to show that the functions defined by the program satisfy the
axioms involving the function names. I am not aware that this has ever been
done.

5. As described in [McCarthy, 1962], attachments can be combined with reflexion
principles to allow the results of decision procedures to be entered as formulas. 1
don’t think Lemmings will require this.

Richard Weyhrauch [?] has the most elaborate system involving attachment. I
don’t think Lemmings will require its complexities.
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9 Programs for Playing Lemmings

How can the above facts and proposed formalisms be used in a program for playing
Lemmings?

9.1 Planning

The simplest kind of planning for Lemmings is to give a sequence of objectives, each
of which is to be achieved reactively on the basis of the scene visible at the time
of completion of the previous objective. Let’s see how this works out for Game7 of
Lemmings Jr.. We give one such plan but note where there may be some problems
with a purely reactive system for achieving the successive objectives.

In Game7 there are two lemming sources that open approximately simultaneously,
both above a platform. In the middle of the platform there is a pond that drowns
lemmings that fall in. It might be surmounted by a long bridge, but none of the
solutions I have attempted involve doing this. As in all Lemmings games, the lemmings
walk to the right when they drop out of the source. The lemmings must be got down
from the platform and then marched to the left over or through various obstacles.
Here’s the plan.

1. Start first left lemming (lemming from left lemming source) digging just after it
has moved away from under source.

2. Start first right lemming digging just after it has moved away.

e

Start any lemming that over-runs the hole being dug to digging its own hole.
There won’t be more than two.

If a left lemming bounces left (happens rarely) make it a floater.
Increase rate of lemmings coming from source to maximum.

Make left digger a basher before it breaks through ceiling.

e o e

Make first right digger a miner as soon as its hole is deep enough so that lemmings
won’t climb out of it.

oo

When left basher stops at iron wall, make it a digger.
9. When left digger digs far enough to clear iron wall, make it a miner.

10. Comment: These steps will get the lemmings safely down. There are now two
cases according to whether a jumper is between the two mounds on the lower
level or not.

If yes, go to step 12
11. Make first lemming to approach the right tower from right into a climber.

12. Make sure the lemming going to the left between the two towers is a climber going
left.
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13. When the climber has passed the left tower, make it a builder at a place where
it will build over the lemming trap in one round of building. The right place
is determined by experience. If the most obvious place is chosen, the monster
reaches out of the trap. If experience is to be used, then there must be a memory
of places from play to play of the game. Otherwise, the place must somehow be
designated by the planner to the reactive player. When I am playing the game,
I remember landmarks like bushes, but it would be easy to devise a co-ordinate
system and give the x-co-ordinate. This might be considered contrary to the idea
making the program solve the problem that humans solve, using very limited
capabilities of numerical estimation.

14. When the builder has passed the lemming trap and become a walker again, make
it a builder again when it has reached the point where a two section bridge will
reach the slope leading to the goal with the lemming continuing to the goal.
Again experience is involved to learn the right place. Again measurement might
replace experience, since a Lemmings bridge rises on pixel for every two pixel it
goes horizontally.

15. When the builder has reached the end of the first stage of bridge building, make
it a builder again. (A two stage bridge is needed and suffices.)

16. When the builder has reached the slope, designate a lemming on the right as a
basher, just as it reaches the right tower going left.

17. When the basher has broken through and become a walker, designate it a basher
again when it reaches the left tower.

18. This is all that needs to be done. All the lemmings are saved.

We believe that each of the steps mentioned above can be acomplished by reactive
programming except that step 12 involves remembering whether it is necessary to
designate the lemming between the towers a climber. If it was the jumper, then it is
necessary, but if it just climbed it is unnecessary. The conditional element could be
avoided in this case, because it does no harm to designate a lemming a climber that
is already a climber. However, it is probably a good idea to allow reactive programs
some reference to memory.

In this example, it seems that all the reactive execution is done subordinate to
single steps generated by the plan. It is not clear whether this is always possible in
Lemmings. Moreover, it makes the plan rather rigid. There is no provision for going
back to the planning level if the reactive level encounters an unexpected difficulty.

Consider the communication between the logical planner and the reactive executor
of steps. The following considerations apply.

1. Approximately as proposed in [McCarthy, 1959], when the planner infers a sen-
tence of the form

should-achieve p (16)
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as a side-effect, the reactive achiever is called with p as argument. When the goal
is achieved, the observation program takes another look at the scene and modifies
the logical database accordingly. Inference then resumes.

2. Any information needed to achieve a goal that cannot be obtained by the achiever
directly from the scene must be provided to the goal-achiever in advance.

3. This scheme provides for no other communication between the logic part of the
system and the reactive part and is therefore less sophisticated than many ex-
isting systems that plan and execute. At least conceptually, however, it seems
appropriate to begin with this primitive interaction and then study what more
this particular fruit fly may require.

9.2 First Experiments with Lemmings

Perhaps I am too unambitious, but Lemmings strikes me as presenting considerable
experimental difficulties, and I advocate starting slowly. Here are some steps.

1. A tool is needed for programs that interact with the Lemmings program. It should
begin with interaction with the pixel maps displayed by the program. Programs
like Planet X bring the pixel map of a Macintosh into an X-window, and an
analogous program could bring it into an X-window reachable by a Common
Lisp or C++ program. Alternatively, the Lemmings pixel map might be accessed
directly by programs in the Macintosh or in a PC.

2. Another early step is the parsing of the pixel map into regions. The result of such
a parsing is a tree of regions and subregions. Very likely the parsings will have
to be extendable when the program decides that it is necessary to go back to the
pixel map for more information.

3. The first programs to play the game should concentrate on the easier games.
Many of these can be solved greedily, i.e. by reacting to the scene with actions
that move the situation closer to the goal.

4. The next step is tree search as discussed in the next subsection.

9.3 Tree Search

Perhaps Lemmings games can be solved by tree search. If so, it will be a very sophis-
ticated tree search.

First consider a brute force tree search. The actions available to a player can be
described as clicking the mouse on a point on the computer screen or doing nothing.
An action must be taken at an interval which is less than one second but probably
not less than 0.1 seconds. Some parts of the screen are unresponsive, so we can regard
doing nothing as clicking on such a place. The screen on a Macintosh PowerBook is
640 by 480 pixels. Thus the player has 307200 choices every 0.1 seconds. Even if the
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player could fully observe the consequences of each choice, the branching would make
tree search of the full tree impractical.

What must we do to make tree search practical? We first consider what reduced

trees to use.

1.

First we merge clicking on a quality and clicking on a lemming. This eliminates
clicking on two qualities in succession which is pointless, because it is equivalent
to clicking on just the second quality.

Now we choose a delay. The most common delay is 0. Most things you want
to do are done right away. We want to avoid branching on times, so we choose
times by events. Thus a clicking on a lemming x the next time lemming y is in a
particular position is a choice. Naturally, the case when x is the same lemming
as y is distinguished. We still have too much branching, and we must avoid even
generating far-off events, at least until earlier parts of the tree have been searched.

3. Now we choose the lemming that is to receive the quality. For this search to be

efficient the lemmings must be grouped into equivalence classes, so that choosing
only one lemming in the class is considered. Indeed when the lemmings are close-
packed, it isn’t possible to tell one walker from another.

4. A common type of event is a lemming, usually the one we intend to modify,

reaching a certain place. If the lemmings move a pixel at a time (I'm not sure of
that.), then there may be several hundred places where we could choose to click.
Many consecutive choices of place are likely to be equivalent. In order to reduce
the choices the horizontal or vertical line along which the lemming is moving has
to be divided into heuristically different regions.

Here is where a real difference with previous tree search algorithms must arise.
We need to make the division into regions tentative and refine it when this is
required.

5. In one game a blocker is needed, but 100 percent of the lemmings are to be saved,

and therefore having to blow up the blocker will result in a loss. The tree search,
if that’s what it is, is abstract, because the node in which there is a leftover
blocker is at the end of the game. The solution is that the very first lemming out
of the source is made into a floater (parachute jumper) and then into a blocker;
the very last lemming out of the source is made into a floater and then into a
miner just when it can undermine the blocker. Both then parachute to safety.

If we regard this reasoning as tree search, then we consider making the first
lemming a blocker as one edge, solving the rest of the game as another edge, see
this as a loss, backtrack and put in making the lemming into a floater, etc.

6. In building a bridge or digging a hole, the precise place to start is sometimes

important.

The tree search algorithm itself has to decide in what order to examine the nodes.

This clearly requires many heuristics, most specifically considering first moves and
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sequences of moves that are recommended by some idea. This is where logic will surely
creep back in.

It is not obvious that all the above notions can be applied in a way that will reduce
the tree search to managable proportions. My intuition is that they can—at least for
large parts of many games.

Tree search often becomes inefficient when the sequence of actions is divisible into
actions that independently affect different aspects of the situation. Then it usually
becomes more efficient to break the problem into parts that can be thought about
separately, solve the separate problems and then combine the results. I think Lemmings
has enough of this to make a pure tree search algorithm impractical.

(This phenomenon is what makes pure tree search algorithms impractical for Go.
It is necessary to consider the different areas of the board separately and then combine
the results.)

Lemmings tree searches can include retries of games. For example, when the place
a blocker is exploded turns out to be too thin, the program should take another look
at the pixel map and find a thicker place to explode the blocker.

10 Some Formulas for a Simple Lemmings Game

Game0 is a simplification of the first game of Lemmings Jr. There is only one lemming.

We give a sequence of formulas narrating the journey of a lemming /0 from the
lemming source to the lemming sink. It applies to the journey of the lemming chosen
to dig even when other lemmings are present. For each formula we say where we expect
it to come from.

holds(F open source, SO) (17)

As is conventional in situation calculus formalizations, S0 is the initial situation. The
formula states that the lemming source will open. This is inferred from a general fact
about the start of lemming games. Some lemming games have more than one source.
However, we may take it as an observation of the screen that there is one lemming
source in this game.

Let S1 = next(open source, S0). We now have

holds(F' falls 10, S1).

This follows from (8). It is a general fact about Lemmings that a lemming will fall out
if not all have fallen out. Calling one of them [0 is allowable, but we’ll do this more
precisely in a later version of these formulas.

Let

S2 = next(falls 10, S1). (18)
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This is the next situation in which [0 is falling.

holds(simple-chamber c0, S0)

A simple chamber will be rectangular on the screen with walls at both ends. We make
c0 a simple chamber in SO and can rely on persistence to keep it a simple chamber
in S2 and beyond. This would be used in planning to solve Game(. Alternatively,
if we are actually playing Game0, we can observe that c0 is a simple chamber in S2.
This requires a mechanism for associating names with features of the picture and with
situations depicted on the screen.

Next we want

Let p0 = value(below source, c0), S0).

This is the point on c0 immediately below the source. 1 suppose we should assert
(and later infer) it exists before we name it.

holds(above(source, floor c0),S0).

(3p)(holds(above(source,p), S0) A holds(on(p, floor c0),S0).
Now we can have
p0 = value(below(source, c0), S0).
We are now ready for
holds(F at(10,p0), S2)
and consequently
holds(at(10,p0), S3)
with
S3 = next(at(10,p0), S2).

Now that [0 is down on the floor of c0, it will walk around until the player turns
it into a digger. The details of that, while part of the “biography” of 10, do not come
into postulating

holds(F digger 10, S3),

because this refers to an action of the player in designating /0 to be a digger. From it
we get
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S4 = next(digger 10, S3).
The fact that [0 is still in ¢0 does come into inferring from
pl = value(location(l0), S4)
that
holds(on(pl, floor c0), S4).

Now we need more geography, including the lower chamber c1. We need to say that
cl is a simple chamber modified by putting the lemming sink at its right end. We also
must say that every point of the floor of 0 is above the ceiling of cl1.

I am not satisfied with the suggestions given above for describing chamber types
as modifications of basic types, so we will omit this for now. On the other hand, it is
straightforward to say that the floor of co is above the ceiling of c0. We have

(Vsp)(holds(on(p, floor c0), s) D (3p')(holds(on(p’, ceiling 1), s)Aholds(above(p, p'), s)))
and from it we get
p2 = value(below(pl, ceiling cl), S4)
and
S5 = next(at(l0,p2), S4).

We have used holds(diggable(pl,cl), S0).
Similarly we want to infer that [0 will fall to a point p3 on floor cl, giving

S6 = next(at(l0,p3), S5).

holds(walker 10, S6)

Now we have two cases according to whether holds(rightist 10, S6) or holds(leftist 10, S6).
In either case we can show

F(at(10,lemming-sink), S6)

I used holds(p, s) instead of just p(s), because we might want to quantify over p.
However, we haven’t used this in the formulas given so far.
There are many more non-trivial matters that require careful consideration.
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10.1 Next Steps

Game0 is simple enough so that it is almost a conventional situation calculus problem.
Even Gamel requires more.

1.

Gamel, the first game of Lemmings Jr. has 10 lemmings. We must introduce an
object for the group of them, and then separate out the lemming designated to
be the digger.

. When the hole is shallow, lemmings pass over it. When it gets deep the fall

in. They continue to alternate directions while in the hole, and the direction a
lemming has when it falls out of the hole determines which way it will walk on
the floor of c1.

. Even in Game0, the sentences about the future are derived by nonmonotonic

reasoning. We haven’t said how this is done. The simplest aspect of this is that
the geometric relations of the chambers tend to persist, but the positions of the
lemmings don’t.

Continued events like digging or falling need both macroscopic and microscopic
formalizations. At a macroscopic level, a lemming falls to the floor or digs to the
ceiling of the lower chamber or walks to the end of the chamber. At a microscopic
level the falling or digging is continuous and can be interrupted or can cause other
events part way.

. The geography involves describing the scene to the extent needed as as collection

of related instances of spatial types. The formalization must tolerate elabora-
tions like the change in the floor of a chamber caused by a basher (horizontal
digger) plowing it up. When an elaboration is not required, it shouldn’t affect
the statements that are made or the reasoning done with them.

Concurrent action needs to be describable in whatever level of detail is needed to
draw the required conclusions.

. What a person learns and can communicate to another person is often that in a

certain kind of situation certain changes can be achieved. Therefore, to be able to
give advice to a Lemmings program will require a formalization of can. Something
is known about this problem, less about how to formalize how something that can
be done is to be accomplished.

11 Remarks

Some of the ideas in this section may have to be abandoned. Some of the ideas discussed
informally in the present draft may be included in the more formal sections of the paper.
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11.1 Nonmonotonic Reasoning
Lemmings may present new problems for nonmonotonic reasoning.

1. It is a general feature of nonmonotonic reasoning to implicitly infer that the

facts being taken into account are all that are relevant to the phenomenon being
reasoned about. However, this has not been put into the formalism explicitly.
Making it explicit may be important for reasoning about Lemmings. A Lemmings
player learns to win a particular game by repeated trying. He uses the fact that
the same action in the same situation always has the same result. Formally this is
assumption is incorporated in the use of a function result to get a new situation
s' = result(e, s), i.e. the new situation is determined by the old situation and the
event (action) that occurs in the old situation.
However, a player uses more than the functionality of the result of an event,
because he wants to learn not merely from exact repetitions of the situation
but from repetitions of those aspects of the situation that are relevant to the
phenomenon he is learning about.

Therefore, we need to be able to express as a circumscription jumping to the
conclusion that we have repeated the relevant aspects of a previously examined
situation. In Lemmings, this is related to locality, i.e. it doesn’t matter what the
lemmings elsewhere in the scene are doing.

2. Something like the philosophers’ paradox of the heap comes up in Lemmings,
and a solution suggests itself that may have more general application. Suppose
a lemming is removed from a bunch of lemmings. We draw the nonmonotonic
conclusion that we still have a bunch. If you repeatedly draw this conclusion
enough times, one of the conclusions will be false, because you will have eliminated
the whole bunch. So what? The reasoning was nonmonotonic and admittedly
risky.
There is a related fact about nonmonotonic reasoning. Suppose for a variable x
you infer nonmonotically p(z). Your nonmonotonic logic should be such that this
does not allow you to infer (Vz)p(z), i.e. universal generalization is not allowed.

11.2 Maybe projection isn’t all Logic.

In AT projection can be done by running the progam, provided the complete state
of the system is available, and the program describing the evolution of the system is
available.

Suppose the neither a complete description of the situation nor a complete descrip-
tion of the process is available. Situation calculus ([McCarthy and Hayes, 1969]) was
invented to deal with this by allowing logical inference from facts about a situation for
which we do not have a complete description.

However, it is possible that humans do some projection by non-logical means, i.e.
by running some mental process on a representation of the situation. If so, such mental
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simulation must use a greatly schematized representation of situations. The idea is to
be able to answer a question, “What will happen if ... ?” by mental simulation. A
program could also use some kind of schematized simulation. Its output seems to be
propositional. Subjectively, such simulations usually seem to be fragmentary.

11.3 Causal Space and Restricted Situations

Suppose a miner has been started digging in an upper level. If there is nothing that
blocks digging, it will break through and fall to the next level down provided nothing
happens to interrupt this. I want to use a formalism like that proposed in the draft
[McCarthy 94]

The most straightforward way of saying that the miner will eventually fall through
is to say he will if no events occur. This is much too strong a condition. Here’s an
idea.

1. Introduce a concept of causal space. In many of the approximate theories we will
want to use, causal space will not correspond to real space.

2. Causal space has points. Events occur at points. Points persist from situation to
situation. Thus we can talk about the same point in related situations.

3. Distance in causal space is defined by the time of propagation of effects of events.
Events cannot affect fluents associated with far away points in a short time.

4. Regions are sets of causal points, normally they will be built up from something
like open sets in causal space, i.e. if a point is in the “middle” of a region,
sufficiently nearby points will also be in the region.

5. The fewer points there are in causal space close to a given point, the more con-
veniently local computations can be done. We will want to work with spaces
without very unlikely causal connections. For example, President Clinton could
conceivably wake up at bam with a sudden desire to telephone John McCarthy,
but it is better to ignore the possibility and put him at a much larger causal
distance than this possibility allows.

This suggests regarding causal space as a metric space. Indeed it may be a metric
space, but we want to reserve judgment on what if any topology we shall want to
use.

11.4 Formalizing Stratagems

It is stated in the Lemmings manual, and I observed it many times, that when a bridge
builder bumps its head on a ceiling, it reverses course. An ordinary walker keeps
going. To me this was an annoyance. It meant that to be able to reflect walkers,
it was necessary to start bridge building several times. Recently, I found a use for
the phenomenon, doubtless a use intended by the game designers. If we catch the
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ex-builder just after it has reversed, it will build a bridge in the opposite direction and
will not be followed by other lemmings. This sometimes permits building a ladder of
bridges without other lemmings falling off the partial bridges. After the builder has
reached the destination the gaps can be closed, and the mob will follow.

I thought of the stratagem while away from the game.

The possibility of the stratagem is implied by previously known lemming physics.
However,

1. The stratagem is formulatable in natural language and in logic and can be com-
municated from one person to another. We need to figure out how to express
such stratagems formally.

2. It is not obvious how a program could be made to search for such stratagems.

11.5 Agre and Chapman

Agre and Chapman ([Agre and Chapman, 1987]) describe a program for playing the
game of Pengo. According to that article, Pengo does not require planning. An ade-
quate game is played by a program that reacts reflexively to rather simple patterns in
the position. For example, their program Pengi uses terms like

the-block-that-the-block-I1-just-kicked-will-collide-with

and propositions like

there-is-no-block-suitable- for-kicking-at-the-bee,

where the dashes indicate that each of the above two expressions is elementary and
encoded by some program.

Since the program is specific to the Pengo game, it doesn’t correspond to the human
ability to learn the rules and then learn how to play effectively.

A program deciding what to do based on a fixed set of such terms and propositions
would not work for Lemmings. Thus winning one of the games requires making the
very first lemming into a floater and using this quality only after the last lemming has
emerged. Discovering this requires that the program do planning. The argument the
program has to make is something like this.

I need to make the first lemming into a blocker, but if I plan to blow him up
at the end I won’t save all the lemmings—which is required in this game.
Therefore, he must be undermined rather than blown up. However, if he
is undermined as just a blocker, he will fall to his death when undermined.
Therefore, he must be made into a floater before he is made a blocker, i.e.
at the very beginning. The very last lemming out of the source must also
be made a floater and then a miner.
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Actually there is a way out whereby it could be claimed that a reactive strategy
will work for Lemmings, but I doubt that the advocates of reactive programs would
want to take it. Namely, if we put a sufficiently rich mental structure into the external
situation, then we could imagine a reactive program operating mainly in the mental
part of the space could do anything a planner can do. It would be interesting to try
to work out details of this idea.
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