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Chapter 1

INTRODUCTION

Logical AI since 1958 has had one major theme. It is to formalize aspects of
the common sense knowledge and reasoning that were previously discussed
only informally. Many aspects of the common sense informatic situation are
not conveniently formalized using exclusively the methods that were success-
ful in mathematics and physical science. Many philosophers and other people
took this as evidence that logic was unsuitable for expressing common sense
knowledge and reasoning with it. Instead we find that additional logical
methods are needed and have proved capable of making progress.

Here are some specifics.

• Human level AI must operate in the common sense informatic situa-
tion in which humans think. It contrasts with the bounded informatic
situations of formal scientific theories and most AI systems. There is
no a priori limit on what information is relevant. See chapter 4.

• Mathematical logic was invented for human convenience, specifically
to make definite the notion of correct reasoning. Formal logical the-
ories are imbedded in informal human knowledge and reasoning. We
might try to invent an informal machine way of representing knowledge
and reasoning in which logical reasoning would be imbedded. Unfortu-
nately, there are no proposals for such an “informal” language. There-
fore, logical AI has always been completely formal. Tarski has shown
that metalanguage can be formalized, and we propose to do that also.

• Human reasoning is often nonmonotonic. Therefore, it was necessary

11



12 CHAPTER 1. INTRODUCTION

to develop formal logical nonmonotonic reasoning methods. Circum-
scription and default logic were the first steps.

• Particular facts and reasoning methods are often correct only in a con-
text. People deal with contexts informally. Logical AI must deal with
them formally.

• The concepts used in common sense reasoning are often only approxi-
mate. A logical treatment of intrinsically approximate, i.e. ill-defined,
concepts is required.

This book concerns steps in realizing these goals.
Logical AI is an ambitious approach to making intelligent computer programs—

including programs of human level intelligence. It involves understanding the
world well enough to put enough information in the form of logical axioms
so that a good enough reasoning program can decide what to do by logical
reasoning.

Logical AI has proved difficult, but it is probably closer to the goal of
human level AI than the other approaches that have been tried. It has also
had many successes in limited domains.

Animal-level intelligence can be achieved by simpler systems than are
required for human-level AI. Logical AI is not needed for representing simple
stimulus-response behavior. To the extent that an animal can predict the
consequences of a sequence of actions, logical AI may be useful in describing
animal level intelligence.

1

1Logical AI continues a line of inquiry that perhaps starts with Aristotle (384–322
BC) who began the study of the rules of reasoning. It continues with the development of
mathematical logic by Leibniz, Boole, De Morgan, Frege, Peirce, . . . .

The goal was best expressed by Leibniz who wanted to replace dispute by logical calcu-
lation. Since he built calculators, I assume his idea included both human calculation and
machine calculation.

Leibniz didn’t get far with mathematical logic, but George Boole and Augustus De
Morgan, followed by Gottlob Frege and Charles Peirce, created modern logic. Zermelo-
Fraenkel set theory, as formalized in first order logic, is adequate for expressing all formal
mathematical statements. The properties of this logic, including its strengths and limita-
tions, were established in the 20th century by Gödel, Tarski, Church, Turing, Kleene and
many others.

While ZF and ZFC are adequate for expressing mathematical definitions and facts, the
proof in the systems described in the textbooks are too long and difficult to construct.
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We often refer to robots. For the purposes of this book a robot is a
computer program with sensors and effectors and a continued existence from
task to task. We include in the concept programs whose sensors and effectors
are purely symbolic, e.g. robots that live on the web, but we are most
interested in robots with physical sensors and effectors including mobility.

Logical robots represent what they know about the world mainly by sen-
tences in suitable logical languages.

When we refer to intelligent machines we mean intelligent computer pro-
grams except in the few cases when non-computer machines are mentioned
explicitly.

1.1 Human-Level AI

The ambitious goal of artificial intelligence research is to make computer pro-
grams with human-level intelligence. Alan Turing was the first to formulate
it. In his (Turing 1950), he conjectured that a computer program would suc-
cessfully pretend to be human against a sophisticated opponent by the year
2000. Obviously, we didn’t make it. Elsewhere, (?), he thought it might take
100 years.

Allen Newell and Herbert Simon were explicitly more optimistic in the
late 1950s, but it seems to me that this optimism was based on the conjec-
ture that the means-end methodology of their General Problem Solver GPS
was adequate for human-level intelligence. Unfortunately, the GPS idea was
inadequate.

Human-level AI needs to be distinguished from human-like AI. AI can use
computational speeds and storage unavailable to humans. Moreover, many
features of human intelligence resulting from our evolution are unneeded for
AI.

Human-like AI is interesting in itself, and its evaluation requires detailed
comparison with human performance. Moreover, AI still has a lot to learn

Systems admitting short proofs, especially when computers can be used to carry out
routine though lengthy processes, are being developed. One attempt is the Mizar project.

However, the goal expressed by Leibniz, Boole, and Frege of expressing common sense
reasoning in logical form requires extensions to mathematical logic to deal formally with
contexts, with concepts as objects and for nonmonotonic reasoning. Even the common
sense reasoning expressed in natural language in mathematics books requires extensions
to logic if it is to be expressed formally. Perhaps the kinds of extensions proposed in this
book will be adequate.
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from studying human performance.

One tool is introspection—e.g. figuring out how one performs a mental
task. Introspection has a bad name in psychology, because much 19th century
psychology drew wrong and vague conclusions from it. Indeed the results of
introspection need to be verified by other means. One of these other means
is a psychological experiment. More important for AI is verifying whether
an introspected method works in a program. It can also be verified that an
introspected idea can be formalized suitably in logic.

Chapter ?? proposes a path to human-level logical AI. To realize this
path, or some other, conceptual advances are required. Ultimate success is
likely, because understanding human level intelligence is a scientific problem
like many others that scientific research has solved and is solving. How
long it will take cannot presently be predicted. I have offered the range of
estimates—five years to five hundred years. New scientific ideas are probably
required—not just scaling up present approaches.

The present state of AI research permits many applications, but some of
the applications that have attempted require aspects of intelligence that are
not understood well enough to be programmed.

Contrast logical AI with approaches based on simulated evolution. The
evolutionists propose to make a system that can evolve into one that behaves
intelligently. The designers of the system need not even be able to understand
how it works—any more than we have full understanding of how human
intelligence works. This approach should also succeed eventually.

Logical AI is more ambitious. We propose to understand the facts of the
common sense world well enough to make a system that can act intelligently
and can learn explicitly from its experience. The designers of logical AI
systems will understand the intelligent behavior our programs exhibit. This
approach will also succeed.

It’s a race.

1.2 Common sense

It turns out that the key problem for human level AI is the problem of giving
the program common sense.
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1.3 Mathematical Logical Reasoning

The founders of mathematical logic, Leibniz, Boole and Frege, all wanted
to use it to express common sense information. For example, Leibniz hoped
to replace argument by calculation. Boole called his book “The Laws of
Thought”. Frege discussed both sense and denotation. Mathematical logic,
as created by these men and as improved by their 20th century successors is
adequate for expressing reasoning in mathematics and in the mathematical
formalizations of various sciences. However, as we shall see, it needs to be
supplemented by nonmonotonic reasoning in order to deal with the common
sense informatic situation.

The simplest reasoning is forward reasoning from a set of premises.
It starts from a set A of sentences and infers from it some conclusions, say

p, q, and r. The idea is that if the premises are believed, there is reason to
believe the conclusions. In the conventional case of mathematical logic, the
conclusions are true whenever 2 the premises are true. Therefore, believing
the premises ought to compel one to believe the conclusions. We call such
reasoning rigorous and the process of doing the reasoning deduction. Section
?? tells more.

The logic of correct reasoning was studied by Aristotle and later by Leib-
niz and Boole. However, the first complete system was first proposed in by
Frege in 1879, proved complete by Gödel in 1930 and well established by
the 1930s. (See (Van Heijenoort 1967) for the basic papers.) Humans can
do mathematical logical reasoning and aspire to the rigor of mathematical
logic but often don’t make it—from inability, from a need for speed, or from
mixing correct deductive reasoning and other forms of reasoning.

Deductive reasoning suffices for formalizing proofs of theorems in math-
ematics, although it is inadequate to formalize the process of finding worth-
while theorems or finding the proofs.

Deductive reasoning is monotonic in the sense that the set of conclusions
C(A) that follow from a set A of premises is a monotonic increasing function
of the set A.

Formalizing common sense requires more than deductive reasoning as we
discuss briefly in the following sections.

2The common sense meaning of the word “whenever” is a good approximation here.
However, there is a more precise notion in symbolic logic based on the concept of an
interpretation of a logical language. What we want is that the conclusion shall be true in
all interpretations in which the premises are true. More about this later.
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Formal mathematics relies entirely on purely deductive reasoning, al-
though nonmonotonic reasoning is to be found in the natural language dis-
cussions in mathematical books and articles.

1.4 Nonmonotonic reasoning

Unfortunately, the world is not so kind as to always provide us, or the robots
we may build, with sufficient premises to get the conclusions we need solely
by monotonic reasoning. We and our robots need to be braver at the cost
of occasional error and having to take back some conclusions. Indeed we
humans are braver and would hardly ever be able to decide what to do if we
weren’t. These braver forms of reasoning are mostly nonmonotonic.

Nonmonotonic reasoning is necessary for both humans and machines even
though the conclusions reached do not always follow from the premises and
are therefore not always true when the premises are true. A conclusion
reached by correct nonmonotonic reasoning may have to be withdrawn when
more facts become available.

Nonmonotonically inferred conclusions should be true in all preferred in-
terpretations in which the premises are true.

Here’s the capsule example of nonmonotonic reasoning. Suppose I hire
you to build a cage for my bird. You will correctly infer that you have to put
a top on the cage to prevent my bird from escaping. This is nonmonotonic
reasoning, because if I add the assertion that my bird is a penguin, you will
withdraw the conclusion that the cage needs a top.

The inadequacy of purely deductive reasoning has long been known, and
systems have been developed for probabilistic reasoning and inductive rea-
soning. However, these do not cover the main cases where we need to go
beyond deduction. All the systems I know about assume known what propo-
sitions are to be assigned probabilities, given fuzzy values or tested according
to the evidence.

AI research since the late 1970s has developed formalized nonmonotonic
reasoning, abbreviated NMR. These systems form new sentences rather than
just assigning probabilities or truth values to sentences already present.
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1.5 Elaboration tolerance

A formalism is elaboration tolerant to the extent that it is convenient to
modify a set of facts expressed in the formalism to take into account new
phenomena or changed circumstances. Representations of information in
natural language have good elaboration tolerance when used with human
background knowledge. Human-level AI will require representations with
much more elaboration tolerance than those used by present AI programs,
because human-level AI needs to be able to take new phenomena into ac-
count.

Chapter ?? and (McCarthy 1999c) treat elaboration tolerance in some
detail. Much of the “brittleness” of present AI systems can be explained by
their lack of elaboration tolerance.

Formalized mathematical theories rarely have much elaboration tolerance,
because elaborations are done in the mental processes of the author and then
expressed in the natural language part of books and articles. The author then
makes a completely new logical formalization for the elaborated theory.

This won’t do for logical AI, because logical AI requires that the mental
processes be carried out in the logical language.

1.6 Concepts as objects

1.7 Contexts as objects

1.8 Approximate objects and theories

1.9 Consciousness
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Chapter 2

CONCEPTS OF LOGICAL AI

2.1 Introduction

Logical AI involves representing knowledge of an agent’s world, its goals
and the current situation by sentences in logic. The agent decides what to
do by inferring that a certain action or course of action was appropriate to
achieve the goals. The inference may be monotonic, but the nature of the
world and what can be known about it often requires that the reasoning be
nonmonotonic.

Logical AI has both epistemological problems and heuristic problems.
The former concern the knowledge needed by an intelligent agent and how
it is represented. The latter concerns how the knowledge is to be used to de-
cide questions, to solve problems and to achieve goals. These are discussed in
(McCarthy and Hayes 1969a). Neither the epistemological problems nor the
heuristic problems of logical AI have been solved. The epistemological prob-
lems are more fundamental, because the form of their solution determines
what the heuristic problems will eventually be like.1

This article has links to other articles of mine. I’d like to supplement the
normal references by direct links to such articles as are available.

1Thus the heuristics of a chess program that represents “My opponent has an open file
for his rooks.” by a sentence will be different from those of a present program which at
most represents the phenomenon by the value of a numerical co-efficient in an evaluation
function.
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2.2 A LOT OF CONCEPTS

The uses of logic in AI and other parts of computer science that have been
undertaken so far do not involve such an extensive collection of concepts.
However, it seems to me that reaching human level AI will involve all of the
following—and probably more.

Logical AI Logical AI in the sense of the present article was proposed in
(McCarthy 1959) and also in (McCarthy 1989). The idea is that an
agent can represent knowledge of its world, its goals and the current
situation by sentences in logic and decide what to do by inferring that
a certain action or course of action is appropriate to achieve its goals.

Logic is also used in weaker ways in AI, databases, logic programming,
hardware design and other parts of computer science. Many AI systems
represent facts by a limited subset of logic and use non-logical programs
as well as logical inference to make inferences. Databases often use
only ground formulas. Logic programming restricts its representation
to Horn clauses. Hardware design usually involves only propositional
logic. These restrictions are almost always justified by considerations
of computational efficiency.

Epistemology and Heuristics In philosophy, epistemology is the study of
knowledge, its form and limitations. This will do pretty well for AI also,
provided we include in the study common sense knowledge of the world
and scientific knowledge. Both of these offer difficulties philosophers
haven’t studied, e.g. they haven’t studied in detail what people or
machines can know about the shape of an object the field of view,
remembered from previously being in the field of view, remembered
from a description or remembered from having been felt with the hands.
This is discussed a little in (McCarthy and Hayes 1969a).

Most AI work has concerned heuristics, i.e. the algorithms that solve
problems, usually taking for granted a particular epistemology of a
particular domain, e.g. the representation of chess positions.

Bounded Informatic Situation Formal theories in the physical sciences
deal with a bounded informatic situation. Scientists decide informally
in advance what phenomena to take into account. For example, much
celestial mechanics is done within the Newtonian gravitational theory



2.2. A LOT OF CONCEPTS 21

and does not take into account possible additional effects such as out-
gassing from a comet or electromagnetic forces exerted by the solar
wind. If more phenomena are to be considered, scientists must make a
new theories—and of course they do.

Most AI formalisms also work only in a bounded informatic situation.
What phenomena to take into account is decided by a person before
the formal theory is constructed. With such restrictions, much of the
reasoning can be monotonic, but such systems cannot reach human
level ability. For that, the machine will have to decide for itself what
information is relevant, and that reasoning will inevitably be partly
nonmonotonic.

One example is the “blocks world” where the position of a block x is
entirely characterized by a sentence At(x, l) or On(x, y), where l is a
location or y is another block.

Another example is the Mycin (Davis et al. 1977) expert system in
which the ontology (objects considered) includes diseases, symptoms,
and drugs, but not patients (there is only one), doctors or events oc-
curring in time. See (McCarthy 1983) for more comment.

Common Sense Knowledge of the World As first discussed in (McCarthy 1959),
humans have a lot of knowledge of the world which cannot be put
in the form of precise theories. Though the information is impre-
cise, we believe it can still be put in logical form. The Cyc project
(Lenat and Guha 1990) aims at making a large base of common sense
knowledge. Cyc is useful, but further progress in logical AI is needed
for Cyc to reach its full potential.

Common Sense Informatic Situation In general a thinking human is in
what we call the common sense informatic situation, as distinct from
the bounded informatic situation. The known facts are necessarily in-
complete. We live in a world of middle-sized object which can only
be partly observed. We only partly know how the objects that can
be observed are built from elementary particles in general, and our
information is even more incomplete about the structure of particu-
lar objects. These limitations apply to any buildable machines, so the
problem is not just one of human limitations.2

2Science fiction and scientific and philosophical speculation have often indulged in the
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In many actual situations, there is no a priori limitation on what facts
are relevant. It may not even be clear in advance what phenomena
should be taken into account. The consequences of actions cannot be
fully determined. The common sense informatic situation necessitates
the use of approximate concepts that cannot be fully defined and the
use of approximate theories involving them. It also requires nonmono-
tonic reasoning in reaching conclusions. Many AI texts assume that
the information situation is bounded—without even mentioning the
assumption explicitly.

The common sense informatic situation often includes some knowledge
about the system’s mental state as discussed in (McCarthy 1996c).

One key problem in formalizing the common sense informatic situation
is to make the axiom sets elaboration tolerant2.2.

Epistemologically Adequate Languages A logical language for use in
the common sense informatic situation must be capable of express-
ing directly the information actually available to agents. For exam-
ple, giving the density and temperature of air and its velocity field
and the Navier-Stokes equations does not practically allow express-
ing what a person or robot actually can know about the wind that
is blowing. We and robots can talk about its direction, strength and
gustiness approximately, and can give a few of these quantitities nu-
merical values with the aid of instruments if instruments are available,
but we have to deal with the phenomena even when no numbers can
be obtained. The idea of epistemological adequacy was introduced in
(McCarthy and Hayes 1969a).

Robot We can generalize the notion of a robot as a system with a variant
of the physical capabilities of a person, including the ability to move
around, manipulate objects and perceive scenes, all controlled by a
computer program. More generally, a robot is a computer-controlled
system that can explore and manipulate an environment that is not
part of the robot itself and is, in some important sense, larger than the
robot. A robot should maintain a continued existence and not reset
itself to a standard state after each task. From this point of view, we

Laplacian fantasy of super beings able to predict the future by knowing the positions and
velocities of all the particles. That isn’t the direction to go. Rather they would be better
at using the information that is available to the senses.
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can have a robot that explores and manipulates the Internet without
it needing legs, hands and eyes. The considerations of this article that
mention robots are intended to apply to this more general notion. The
internet robots discussed so far are very limited in their mentalities.

Qualitative Reasoning This concerns reasoning about physical processes
when the numerical relations required for applying the formulas of
physics are not known. Most of the work in the area assumes that
information about what processes to take into account are provided by
the user. Systems that must be given this information often won’t do
human level qualitative reasoning. See (Weld and de Kleer 1990) and
(Kuipers 1994).

Common Sense Physics Corresponds to people’s ability to make deci-
sions involving physical phenomena in daily life, e.g. deciding that
the spill of a cup of hot coffee is likely to burn Mr. A, but Mr. B is
far enough to be safe. It differs from qualitative physics, as studied
by most researchers in qualitative reasoning, in that the system doing
the reasoning must itself use common sense knowledge to decide what
phenomena are relevant in the particular case. See (Hayes 1985) for
one view of this.

Expert Systems These are designed by people, i.e. not by computer pro-
grams, to take a limited set of phenomena into account. Many of them
do their reasoning using logic, and others use formalisms amounting
to subsets of first order logic. Many require very little common sense
knowledge and reasoning ability. Restricting expressiveness of the rep-
resentation of facts is often done to increase computational efficiency.

Knowledge Level Allen Newell ((Newell 1982) and (Newell 1993)) did not
advocate (as we do here) using logic as the way a system should rep-
resent its knowledge internally. He did say that a system can of-
ten be appropriately described as knowing certain facts even when
the facts are not represented by sentences in memory. This view
corresponds to Daniel Dennett’s intentional stance (Dennett 1971),
reprinted in (Dennett 1978), and was also proposed and elaborated
in (McCarthy 1979b).

Elaboration Tolerance A set of facts described as a logical theory needs
to be modifiable by adding sentences rather than only by going back
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to natural language and starting over. For example, we can modify the
missionaries and cannibals problem by saying that there is an oar on
each bank of the river and that the boat can be propelled with one oar
carrying one person but needs two oars to carry two people. Some for-
malizations require complete rewriting to accomodate this elaboration.
Others share with natural language the ability to allow the elaboration
by an addition to what was previously said.

There are degrees of elaboration tolerance. A state space formalization
of the missionaries and cannibals problem in which a state is repre-
sented by a triplet (m c b) of the numbers of missionaries, cannibals
and boats on the initial bank is less elaboration tolerant than a situation
calculus formalism in which the set of objects present in a situation is
not specified in advance. In particular, the former representation needs
surgery to add the oars, whereas the latter can handle it by adjoining
more sentences—as can a person. The realization of elaboration toler-
ance requires nonmonotonic reasoning. See (McCarthy 1997).

Robotic Free Will Robots need to consider their choices and decide which
of them leads to the most favorable situation. In doing this, the robot
considers a system in which its own outputs are regarded as free vari-
ables, i.e. it doesn’t consider the process by which it is deciding what
to do. The perception of having choices is also what humans consider
as free will. The matter is discussed in (McCarthy and Hayes 1969a)
and is roughly in accordance with the philosophical attitude towards
free will called compatibilism, i.e. the view that determinism and free
will are compatible.

Reification To refify an entity is to “make a thing” out of it (from Latin
re for thing). From a logical point of view, things are what variables
can range over. Logical AI needs to reify hopes, intentions and “things
wrong with the boat”. Some philosophers deplore reification, referring
to a “bloated ontology”, but AI needs more things than are dreamed of
in the philosophers’ philosophy. In general, reification gives a language
more expressive power, because it permits referring to entities directly
that were previously mentionable only in a metalanguage.

Ontology In philosophy, ontology is the branch that studies what things
exist. W.V.O. Quine’s view is that the ontology is what the variables
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range over. Ontology has been used variously in AI, but I think Quine’s
usage is best for AI. “Reification” and “ontology” treat the same phe-
nomena. Regrettably, the word “ontology” has become popular in AI
in much vaguer senses. Ontology and reification are basically the same
concept.

Approximate Concepts Common sense thinking cannot avoid concepts
without clear definitions. Consider the welfare of an animal. Over a
period of minutes, the welfare is fairly well defined, but asking what
will benefit a newly hatched chick over the next year is ill defined. The
exact snow, ice and rock that constitutes Mount Everest is ill defined.
The key fact about approximate concepts is that while they are not
well defined, sentences involving them may be quite well defined. For
example, the proposition that Mount Everest was first climbed in 1953
is definite, and its definiteness is not compromised by the ill-definedness
of the exact boundaries of the mountain. See (McCarthy 1999d).

There are two ways of regarding approximate concepts. The first is to
suppose that there is a precise concept, but it is incompletely known.
Thus we may suppose that there is a truth of the matter as to which
rocks and ice constitute Mount Everest. If this approach is taken, we
simply need weak axioms telling what we do know but not defining the
concept completely.

The second approach is to regard the concept as intrinsically approxi-
mate. There is no truth of the matter. One practical difference is that
we would not expect two geographers independently researching Mount
Everest to define the same boundary. They would have to interact, be-
cause the boundaries of Mount Everest are yet to be defined.3

Approximate Theories Any theory involving approximate concepts is an
approximate theory. We can have a theory of the welfare of chickens.
However, its notions don’t make sense if pushed too far. For example,
animal rights people assign some rights to chickens but cannot define
them precisely. It is not presently apparent whether the expression
of approximate theories in mathematical logical languages will require
any innovations in mathematical logic. See (McCarthy 1999d).

3Regarding a concept as intrinsically approximate is distinct from either regarding it
as fully defined by nature or fully defined by human convention.
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Ambiguity Tolerance Assertions often turn out to be ambiguous with the
ambiguity only being discovered many years after the assertion was
enunciated. For example, it is a priori ambiguous whether the phrase
“conspiring to assault a Federal official” covers the case when the crim-
inals mistakenly believe their intended victim is a Federal official. An
ambiguity in a law does not invalidate it in the cases where it can be
considered unambiguous. Even where it is formally ambiguous, it is
subject to judicial interpretation. AI systems will also require means
of isolating ambiguities and also contradictions. The default rule is that
the concept is not ambiguous in the particular case. The ambiguous
theories are a kind of approximate theory.

Causal Reasoning A major concern of logical AI has been treating the
consequences of actions and other events. The epistemological problem
concerns what can be known about the laws that determine the results
of events. A theory of causality is pretty sure to be approximate.

Situation Calculus Situation calculus is the most studied formalism for
doing causal reasoning. A situation is in principle a snapshot of the
world at an instant. One never knows a situation—one only knows
facts about a situation. Events occur in situations and give rise to new
situations. There are many variants of situation calculus, and none of
them has come to dominate. (McCarthy and Hayes 1969a) introduces
situation calculus. (Gelfond et al. 1991) is a 1991 discussion.

Fluents Functions of situations in situation calculus. The simplest fluents
are propositional and have truth values. There are also fluents with
values in numerical or symbolic domains. Situational fluents take on
situations as values.

Frame Problem This is the problem of how to express the facts about the
effects of actions and other events in such a way that it is not necessary
to explicitly state for every event, the fluents it does not affect. Murray
Shanahan (Shanahan 1997) has an extensive discussion.

Qualification Problem This concerns how to express the preconditions for
actions and other events. That it is necessary to have a ticket to fly
on a commercial airplane is rather unproblematical to express. That it
is necessary to be wearing clothes needs to be kept inexplicit unless it
somehow comes up.
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Ramification Problem Events often have other effects than those we are
immediately inclined to put in the axioms concerned with the particular
kind of event.

Projection Given information about a situation, and axioms about the ef-
fects of actions and other events, the projection problem is to determine
facts about future situations. It is assumed that no facts are avail-
able about future situations other than what can be inferred from the
“known laws of motion” and what is known about the initial situation.
Query: how does one tell a reasoning system that the facts are such
that it should rely on projection for information about the future.

Planning The largest single domain for logical AI has been planning, usu-
ally the restricted problem of finding a finite sequence of actions that
will achieve a goal. (Green 1969a) is the first paper to use a theorem
prover to do planning. Planning is somewhat the inverse problem to
projection.

Narrative A narrative tells what happened, but any narrative can only tell a
certain amount. What narratives can tell, how to express that logically,
and how to elaborate narratives is given a preliminary logical treatment
in (McCarthy 1995b) and more fully in (McCarthy and Costello 1998).
(Pinto and Reiter 1993) and (R.S.Miller and M.P.Shanahan 1994) are
relevant here. A narrative will usually give facts about the future of a
situation that are not just consequences of projection from an initial
situation. [While we may suppose that the future is entirely determined
by the initial situation, our knowledge doesn’t permit inferring all the
facts about it by projection. Therefore, narratives give facts about the
future beyond what follows by projection.]

Understanding A rather demanding notion is most useful. In particular,
fish do not understand swimming, because they can’t use knowledge
to improve their swimming, to wish for better fins, or to teach other
fish. See the section on understanding in (McCarthy 1996c). Maybe
fish do learn to improve their swimming, but this presumably consists
primarily of the adjustment of parameters and isn’t usefully called un-
derstanding. I would apply understanding only to some systems that
can do hypothetical reasoning—if p were true, then q would be true.
Thus Fortran compilers don’t understand Fortran.
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Consciousness, awareness and introspection Human level AI systems
will require these qualities in order to do tasks we assign them. In order
to decide how well it is doing, a robot will need to be able to examine
its goal structure and the structure of its beliefs from the outside. See
(McCarthy 1996c).

Intention to do something Intentions as objects are discussed briefly in
(McCarthy 1989) and (McCarthy 1996c).

Mental situation calculus The idea is that there are mental situations,
mental fluents and mental events that give rise to new mental situa-
tions. The mental events include observations and inferences but also
the results of observing the mental situation up to the current time.
This allows drawing the conclusion that there isn’t yet information
needed to solve a certain problem, and therefore more information must
be sought outside the robot or organism. (Scherl and Levesque 1993)
treats this and so does (McCarthy 1996c).

Discrete processes Causal reasoning is simplest when applied to processes
in which discrete events occur and have definite results. In situation
calculus, the formulas s′ = result(e, s) gives the new situation s′ that
results when the event e occurs in situation s. Many continuous pro-
cesses that occur in human or robot activity can have approximate
theories that are discrete.

Continuous Processes Humans approximate continuous processes with rep-
resentations that are as discrete as possible. For example, “Junior read
a book while on the airplane from Glasgow to London.” Continuous
processes can be treated in the situation calculus, but the theory is
so far less successful than in discrete cases. We also sometimes ap-
proximate discrete processes by continuous ones. (Miller 1996) and
(Reiter 1996) treat this problem.

Non-deterministic events Situation calculus and other causal formalisms
are harder to use when the effects of an action are indefinite. Often
result(e, s) is not usefully axiomatizable and something like occurs(e, s)
must be used.

Concurrrent Events Formalisms treating actions and other events must
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allow for any level of dependence between events. Complete indepen-
dence is a limiting case and is treated in (McCarthy 1995b).

Conjunctivity It often happens that two phenomena are independent. In
that case, we may form a description of their combination by taking
the conjunction of the descriptions of the separate phenomena. The
description language satisfies conjunctivity if the conclusions we can
draw about one of the phenomena from the combined description are
the same as the conjunctions we could draw from the single description.
For example, we may have separate descriptions of the assassination
of Abraham Lincoln and of Mendel’s contemporaneous experiments
with peas. What we can infer about Mendel’s experiments from the
conjunction should ordinarily be the same as what we can infer from
just the description of Mendel’s experiments. Many formalisms for
concurrent events don’t have this property, but conjunctivity itself is
applicable to more than concurrent events.

To use logician’s language, the conjunction of the two theories should be
a conservative extension of each of the theories. Actually, we may settle
for less. We only require that the inferrable sentences about Mendel (or
about Lincoln) in the conjunction are the same. The combined theory
may admit inferring other sentences in the language of the separate
theory that weren’t inferrable in the separate theories.

Learning Making computers learn presents two problems—epistemological
and heuristic. The epistemological problem is to define the space of
concepts that the program can learn. The heuristic problem is the
actual learning algorithm. The heuristic problem of algorithms for
learning has been much studied and the epistemological mostly ig-
nored. The designer of the learning system makes the program op-
erate with a fixed and limited set of concepts. Learning programs
will never reach human level of generality as long as this approach is
followed. (McCarthy 1959) says, “A computer can’t learn what
it can’t be told.” We might correct this, as suggested by Mur-
ray Shanahan, to say that it can only learn what can be expressed
in the language we equip it with. To learn many important concepts, it
must have more than a set of weights. (Muggleton and De Raedt 1994)
and (Bratko and Muggleton 1995) present some progress on learning
within a logical language. The many kinds of learning discussed in
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(Mitchell 1997) are all, with the possible exception of inductive logic
programming, very limited in what they can represent—and hence can
conceivably learn. (McCarthy 1999a) presents a challenge to machine
learning problems and discovery programs to learn or discovery the
reality behind appearance.

Representation of Physical Objects We aren’t close to having an epis-
temologically adequate language for this. What do I know about my
pocket knife that permits me to recognize it in my pocket or by sight
or to open its blades by feel or by feel and sight? What can I tell oth-
ers about that knife that will let them recognize it by feel, and what
information must a robot have in order to pick my pocket of it?

Representation of Space and Shape We again have the problem of an
epistemologically adequate representation. Trying to match what a
human can remember and reason about when out of sight of the scene
is more what we need than some pixel by pixel representation. Some
problems of this are discussed in (McCarthy 1995a) which concerns the
Lemmings computer games. One can think about a particular game
and decide how to solve it away from the display of the position, and
this obviously requires a compact representation of partial information
about a scene.

Discrimination, Recognition and Description Discrimination is the de-
ciding which category a stimulus belongs to among a fixed set of cate-
gories, e.g. decide which letter of the alphabet is depicted in an image.
Recognition involves deciding whether a stimulus belongs to the same
set, i.e. represents the same object, e.g. a person, as a previously seen
stimulus. Description involves describing an object in detail appropri-
ate to performing some action with it, e.g. picking it up by the handle
or some other designated part. Description is the most ambitious of
these operations and has been the forte of logic-based approaches.

Logical Robot (McCarthy 1959) proposed that a robot be controlled by
a program that infers logically that a certain action will advance its
goals and then does that action. This approach was implemented
in (Green 1969b), but the program was very slow. Shortly greater
speed was obtained in systems like STRIPS at the cost of limiting the
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generality of facts the robot takes into account. See (Nilsson 1984),
(Levesque et al. 1997), and (Shanahan 1996).

Declarative Expression of Heuristics (McCarthy 1959) proposes reason-
ing be controlled by domain-dependent and problem-dependent heuris-
tics expressed declaratively. Expressing heuristics declaratively means
that a sentence about a heuristic can be the result of reasoning and not
merely something put in from the outside by a person. Josefina Sierra
(Sierra 1998b), (Sierra 1998a), (Sierra 1998c), (Sierra 1999) has made
some recent progress.

Logic programming Logic programming isolates a subdomain of first or-
der logic that has nice computational properties. When the facts are
described as a logic program, problems can often be solved by a stan-
dard program, e.g. a Prolog interpreter, using these facts as a program.
Unfortunately, in general the facts about a domain and the problems
we would like computers to solve have that form only in special cases.

Useful Counterfactuals “If another car had come over the hill when you
passed that Mercedes, there would have been a head-on collision.”
One’s reaction to believing that counterfactual conditional sentence is
quite different from one’s reaction to the corresponding material con-
ditional. Machines need to represent such sentences in order to learn
from not-quite-experiences. See (Costello and McCarthy 1998).

Formalized Contexts Any particular bit of thinking occurs in some con-
text. Humans often specialize the context to particular situations or
theories, and this makes the reasoning more definite, sometimes com-
pletely definite. Going the other way, we sometimes have to generalize
the context of our thoughts to take some phenomena into account.

It has been worthwhile to admit contexts as objects into the ontology
of logical AI. The prototype formula ist(c, p) asserts that the propo-
sition p is true in the context c. The formal theory is discussed in
(McCarthy 1993), (McCarthy and Buvač 1998) and in papers by Saša
Buvač, available in (Buvač 1995a).

Rich and Poor Entities A rich entity is one about which a person or ma-
chine can never learn all the facts. The state of the reader’s body is
a rich entity. The actual history of my going home this evening is a
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rich entity, e.g. it includes the exact position of my body on foot and
in the car at each moment. While a system can never fully describe
a rich entity, it can learn facts about it and represent them by logical
sentences.

Poor entities occur in plans and formal theories and in accounts of
situations and events and can be fully prescribed. For example, my
plan for going home this evening is a poor entity, since it does not
contain more than a small, fixed amount of detail. Rich entities are
often approximated by poor entities. Indeed some rich entities may be
regarded as inverse limits of trees of poor entities. (The mathematical
notion of inverse limit may or may not turn out to be useful, although
I wouldn’t advise anyone to study the subject quite yet just for its
possible AI applications.)

Nonmonotonic Reasoning Both humans and machines must draw con-
clusions that are true in the “best” models of the facts being taken
into account. Several concepts of best are used in different systems.
Many are based on minimizing something. When new facts are added,
some of the previous conclusions may no longer hold. This is why the
reasoning that reached these conclusions is called nonmonotonic.

Probabilistic Reasoning Probabilistic reasoning is a kind of nonmono-
tonic reasoning. If the probability of one sentence is changed, say
given the value 1, other sentences that previously had high probability
may now have low or even 0 probability. Setting up the probabilistic
models, i.e defining the sample space of “events” to which probabilities
are to be given often involves more general nonmonotonic reasoning,
but this is conventionally done by a person informally rather than by
a computer.

In the open common sense informatic situation, there isn’t any apparent
overall sample space. Probabilistic theories may formed by limiting the
space of events considered and then establishing a distribution. Lim-
iting the events considered should be done by whatever nonmonotonic
reasoning techniques are developed techniques for limiting the phenom-
ena taken into account. (You may take this as a confession that I don’t
know these techniques.) In forming distributions, there would seem to
be a default rule that two events e1 and e2 are to be taken as indepen-
dent unless there is a reason to do otherwise. e1 and e2 can’t be just
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any events but have to be in some sense basic events.

Circumscription A method of nonmonotonic reasoning involving mini-
mizing predicates (and sometimes domains). It was introduced in
(McCarthy 1976), (McCarthy 1980) and (McCarthy 1986). An up-to-
date discussion, including numerous variants, is (Lifschitz 1994).

Default Logic A method of nonmonotonic reasoning introduced in (Reiter 1980)
that is the main survivor along with circumscription.

Yale Shooting Problem This problem, introduced in (Hanks and McDermott 1986),
is a simple Drosophila for nonmonotonic reasoning. The simplest for-
malizations of causal reasoning using circumscription or default logic
for doing the nonmonotonic reasoning do not give the result that intu-
ition demands. Various more recent formalizations of events handle the
problem ok. The Yale shooting problem is likely to remain a benchmark
problem for formalizations of causality.

Design Stance Daniel Dennett’s idea (Dennett 1978) is to regard an en-
tity in terms of its function rather than in terms of its physical struc-
ture. For example, a traveller using a hotel alarm clock need not notice
whether the clock is controlled by a mechanical escapement, the 60
cycle power line or by an internal crystal. We formalize it in terms of
(a) the fact that it can be used to wake the traveller, and (b) setting
it and the noise it makes at the time for which it is set.

Physical Stance We consider an object in terms of its physical structure.
This is needed for actually building it or repairing it but is often un-
necessary in making decisions about how to use it.

Intentional Stance Dennett proposes that sometimes we consider the be-
havior of a person, animal or machine by ascribing to it belief, desires
and intentions. This is discussed in (Dennett 1971) and (Dennett 1978)
and also in (McCarthy 1979b).

Relation between logic and calculation and various data structures
Murray Shanahan recommends putting in something about this.

Creativity Humans are sometimes creative—perhaps rarely in the life of
an individual and among people. What is creativity? We consider
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creativity as an aspect of the solution to a problem rather than as
attribute of a person (or computer program).

A creative solution to a problem contains a concept not present in
the functions and predicates in terms of which the problem is posed.
(McCarthy 1964) and (McCarthy 1999b)discuss the mutilated checker-
board problem.

The problem is to determine whether a checkerboard with two diago-
nally opposite squares can be removed can be covered with dominoes,
each of which covers two rectilinearly adjacent squares. The standard
proof that this can’t be done is creative relative to the statement of the
problem. It notes that a domino covers two squares of opposite color,
but there are 32 squares of one color and 30 of the other color to be
colored.

Colors are not mentioned in the statement of the problem, and their
introduction is a creative step relative to this statement. For a mathe-
matician of moderate experience (and for many other people), this bit
of creativity is not difficult. We must, therefore, separate the concept
of creativity from the concept of difficulty.

Before we can have creativity we must have some elaboration tolerance2.2.
Namely, in the simple languagge of A tough nut . . ., the colors of the
squares cannot even be expressed. A program confined to this language
could not even be told the solution. As discussed in (McCarthy 1996d),
Zermelo-Frankel set theory is an adequate language. In general, set
theory, in a form allowing definitions may have enough elaboration
tolerance in general. Regard this as a conjecture that requires more
study.

How it happened Consider an action like buying a pack of cigarettes on a
particular occasion and the subactions thereof. It would be a mistake
to regard the relation between the action and its subactions as like
that between a program and its subroutines. On one occasion I might
have bought the cigarettes from a machine. on a second occasion at a
supermarket, and on a third occasion from a cigarettelegger, cigarettes
having become illegal.
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2.3 Alphabetical Index

Ambiguity Tolerance
Approximate Concepts
Approximate Theories
Bounded Informatic Situation
Causal Reasoning
Circumscription
Common Sense Informatic Situation
Common Sense Knowledge of the World
Common Sense Physics
Concurrrent Events
Conjunctivity
Consciousness, awareness and introspection
Continuous Processes
Creativity
Declarative Expression of Heuristics
Default Logic
Design Stance
Discrete processes
Discrimination, Recognition and Description
Elaboration Tolerance
Epistemologically Adequate Languages
Epistemology and Heuristics
Expert Systems
Fluents
Formalized Contexts
Frame Problem
How it happened
Intention to do something
Intentional Stance
Knowledge Level
Learning
Logic programming
Logical Robot
Mental situation calculus
Narrative
Non-deterministic events
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Nonmonotonic Reasoning
Ontology
Physical Stance
Planning
Probabilistic Reasoning
Projection
Qualification Problem
Qualitative Reasoning
Ramification Problem
Reification
Relation between logic and calculation and various data structures
Representation of Physical Objects
Representation of Space and Shape
Rich and Poor Entities
Robotic Free Will
Situation Calculus
Understanding
Useful Counterfactuals
Yale Shooting Problem



Chapter 3

PHILOSOPHICAL AND
SCIENTIFIC
PRESUPPOSITIONS OF
LOGICAL AI

Extinguished theologians lie about the cradle of every
science as the strangled snakes beside that of Hercules.

—T. H. Huxley 1

Abstract: Many ideas from philosophy, especially from recent analytic phi-
losophy, are usable for AI. However, some philosophical points of view make
assumptions that have the effect of excluding the possibility of AI. Likewise
work on AI is not neutral with regard to philosophical issues. This chapter
presents what we consider the presuppositions of logical AI and also some
scientific presuppositions, i.e. some results of science that are relevant. We
emphasize the relation to AI rather than philosophy itself.

3.1 Philosophical Presuppositions

Q. Why bother stating philosophical presuppositions? Why not just get on
with the AI?

1Thomas H. Huxley (1825–1895), the major polemicist for the theory of evolution, was
referred to as Darwin’s bulldog. Progress in AI may help extinguish some philosophies,
but don’t stand on one foot.

37
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A. AI shares many concerns with philosophy—with metaphysics, episte-
mology, philosophy of mind and other branches of philosophy. AI researchers
who ignore philosophy don’t notice some of these common problems. Many of
thse problems are important for AI, especially AI research aimed at human-
level AI. This is because AI concerns the creation of an artificial mind. How-
ever, AI has to treat these questions in more detail than philosophers cus-
tomarily consider relevant.2

In principle, an evolutionary approach to AI need not involve philosoph-
ical presuppositions. However, many putative evolutionary approaches are
crippled by impoverished philosophical assumptions. For example, the sys-
tems often only admit patterns in appearance and can’t even represent reality
behind appearance. (McCarthy 1999a) presents a challenge to learning sys-
tems to learn reality behind appearance.

AI research not based on stated philosophical presuppositions usually
turns out to be based on unstated philosophical presuppositions. These are
often so wrong as to interfere with developing intelligent systems.

That it should be possible to make machines as intelligent as humans
involves some philosophical premises, although the possibility is probably
accepted by a majority of philosophers. The way we propose to build in-
telligent machines, i.e. via logical AI, makes more presuppositions, some of
which may be new.

This chapter concentrates on stating the presuppositions and their rela-
tions to AI without much philosophical argument. A later chapter presents
arguments and discusses other opinions.

objective world The world exists independently of humans. The facts of
mathematics and physical science are independent of there being people
to know them. Intelligent Martians and robots will need to know the
same facts.

A robot also needs to believe that the world exists independently of
itself. Science tells us that humans evolved in a world which formerly
did not contain humans. Given this, it is odd to regard the world as
a human construct. It would be even more odd to program a robot

2For example, the treatment of counterfactual conditional sentences in
(Costello and McCarthy 1999) goes into detail about how counterfactuals are to be
inferred from non-counterfactuals and used to infer non-counterfactuals whereas that in
(Lewis 1973) and in other philosophical literature is mainly concerned with the truth
conditions of counterfactuals.
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to regard the world as its own construct. What the robot believes
about the world in general doesn’t arise for the limited robots of to-
day, because the languages they are programmed to use can’t express
assertions about the world in general. This limits what they can learn
or can be told—and hence what we can get them to do for us.

correspondence theory of truth and reference A logical robot repre-
sents what it believes about the world by logical sentences. Some of
these beliefs we build in; others come from its observations and still
others by induction from its experience. Within the sentences it uses
terms to refer to objects in the world.

In every case, we try to design it so that what it will believe about
the world is as accurate as possible, though not usually as detailed as
possible. Debugging and improving the robot includes detecting false
beliefs about the world and changing the way it acquires information to
maximize the correspondence between what it believes and the facts of
world. The terms the robot uses to refer to entities need to correspond
to the entities so that the sentences will express facts about these en-
tities. We have in mind both material objects and other entities, e.g.
plans.

Already this involves a philosophical presupposition—that which is
called the correspondence theory of truth. AI also needs a correspon-
dence theory of reference , i.e. that a mental structure can refer to an
external object and can be judged by the accuracy of the reference.

As with science, a robot’s theories are tested experimentally, but the
concepts robots use are often not defined in terms of experiments. Their
properties are partially axiomatized, and some axioms relate terms to
observations.

It is possible to be too finicky about truth. Richard von Mises (von Mises 1951)
states that whereas twelve is divisible by three and thirteen is not,
“but a shepherd can no more divide twelve sheep than thirteen into
three absolutely “equal” parts.” The common sense robots must have
should emphasize the sense of truth and the sense of division into parts
in which it is true that twelve sheep can be divided into three equal
parts.Actually, robots should distinguish among natural numbers, ra-
tionals,reals, complex numbers, so maybe von Mises’s point is just be-
side the point.
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The important consequence of the correspondence theory is that when
we design robots, we need to keep in mind the relation between appear-
ance, the information coming through the robot’s sensors, and reality.
Only in certain simple cases, e.g. the position in a chess game, does the
robot have sufficient access to reality for this distinction to be ignored.

Some robots react directly to their inputs without memory or infer-
ences. It is our scientific (i.e. not philosophical) contention that these
are inadequate for human-level intelligence, because the world contains
too many important entities that cannot be observed directly and must
reason about hypothetical and future situations that cannot be imme-
diately observed.

A robot that reasons about the acquisition of information must itself
be aware of these relations. In order that a robot should not always
believe what it sees with its own eyes, it must distinguish between
appearance and reality. It must learn more about these relations from
its experience, from being taught and from reading. (McCarthy 1999a)
presents a challenge problem requiring the discovery of reality behind
appearance.

The correspondence theory of truth may be contrasted with pragmatic
theories of truth in which beliefs are regarded as true if they result in
success in achieving goals. Each kind of theory has adherents among
philosophers. Roughly speaking, pragmatic theories of truth corre-
spond to making reactive robots that respond directly to inputs. Some
behaviors can be programmed this way, but logical robots are appro-
priately designed to do what they think will advance their goals.

science Science is substantially correct in what it tells us about the world,
and scientific activity is the best way to obtain more knowledge. 20th
century corrections to scientific knowledge mostly left the old scientific
theories as good approximations to reality.

Slogan: Atoms are as real as rocks. 102 years elapsed from Dalton’s
article on atoms in 1803 to Einstein’s article on the Brownian motion
in 1905 that convinced the last significant scientific holdout, Wilhelm
Ostwald, that atoms are real. That this took a long time to discover
and to convince scientists is a fact about the position of humans in the
world and our opportunities to observe, not a fundamental fact about
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the world. Alas it didn’t convince the main philosophical holdout,
Ernst Mach.

mind and brain The human mind is an activity of the human brain. This
is a scientific proposition, supported by all the evidence science has
discovered so far. However, the dualist intuition of separation between
mind and body is related to the sometimes weak connections between
thought and action. Dualist models may have some use as psychological
abstractions.

common sense Common sense ways of perceiving the world and common
opinion are also substantially correct. When general common sense
errs, it can often be corrected by science, and the results of the correc-
tion may become part of common sense if their use doesn’t require
numerical observation or high speed numerical computation. Thus
common sense has absorbed the notion of inertia. However, its math-
ematical generalization, the law of conservation of linear momentum
has made its way into the common sense of only a small fraction of
people—even among the people who have taken courses in physics.

From Socrates on philosophers have found many inadequacies in com-
mon sense usage, e.g. common sense notions of the meanings of words.
The corrections are often elaborations, making distinctions blurred in
common sense usage. Unfortunately, there is no end to philosophical
elaboration, and the theories become very complex. However, some
of the elaborations seem essential to avoid confusion in some circum-
stances. Here’s a candidate for the way out of the maze.

Robots will need both the simplest common sense usages and to be
able to tolerate elaborations when required. For this we have pro-
posed two notions—contexts as formal objects (McCarthy 1993) and
(McCarthy and Buvač 1997) and elaboration tolerance discussed in ??3

3Hilary Putnam (Putnam 1975) discusses two notions concerning meaning proposed by
previous philosophers which he finds inadequate. These are

(I) That knowing the meaning of a term is just a matter of being in a
certain “psychological state” (in the sense of “psychological state” in which
states of memory and psychological dispositions are “psychological states”; no
one thought that knowing the meaning of a word was a continuous state of
consciousness, of course.)

(II) That the meaning of a term (in the sense of “intension”) determines
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science embedded in common sense Science is embedded in common
sense. Galileo taught us that the distance s that a dropped body falls
in time t is given by the formula

s =
1

2
gt2.

To use this information, the English (or its logical equivalent) is just
as essential as the formula, and common sense knowledge of the world
is required to make the measurements required to use or verify the for-
mula. Without the embedding there is no difference between Galileo’s
formula and

E =
1

2
CV 2.

The English explains that the latter gives the energy stored in a capac-
itor as a function of the capacitance and the voltage.

possibility of AI According to some philosophers’ views, artificial intelli-
gence is either a contradiction in terms (Searle 1984) or intrinsically
impossible (Dreyfus 1992) or (Penrose 1994). The methodological ba-
sis of these arguments has to be wrong and not just the arguments
themselves. We will discuss some of this in Chapter 16.2 containing
some polemics.

mental qualities treated individually AI has to treat mind in terms of
components rather than regarding mind as a unit that necessarily has
all the mental features that occur in humans. Thus we design some
very simple systems in terms of the beliefs we want them to have and

its extension (in the sense that sameness of intension entails sameness of ex-
tension).

Suppose Putnam is right in his criticism of the general correctness of (I) and (II). We
don’t discuss his own more elaborate ideas.

It may be convenient for a robot to work mostly in contexts within a larger context
Cphil1 in which (I) and (II) (or something even simpler) hold. However, the same robot,

if it is to have human level intelligence, must be able to transcend Cphil1 when it has to

work in contexts to which Putnam’s criticisms of the assumptions of Cphil1 apply.

It is interesting, and perhaps necessary, for AI at first, to characterize those contexts in
which (I) and (II) are correct.
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debug them by identifying erroneous beliefs. (McCarthy 1979b) treats
this. Ascribing a few beliefs to thermostats has led to controversy.
Most philosophers don’t like it, but Daniel Dennett and I are on the
same side of this issue.

third person point of view We ask “How does it (or he) know?”, “What
does it perceive?” rather than how do I know and what do I perceive.
This presupposes the correspondence theory of truth. It applies to how
we look at robots, but also to how we want robots to reason about the
knowledge of people and other robots. Some philosophers, e.g. John
Searle, insist on a first person point of view.

rich ontology Our theories involve many kinds of entity—material objects,
situations, properties as objects, contexts, propositions, indivdual con-
cepts, wishes, intentions. When one kind A of entity might be defined
in terms of others, we will often prefer to treat A separately, because
we may later want to change our ideas of its relation to other entities.

We often consider several related concepts, where others have tried to
get by with one. Suppose a man sees a dog. Is seeing a relation between
the man and the dog or a relation between the man and an appearance
of a dog? Some purport to refute calling seeing a relation between
the man and the dog by pointing out that the man may actually see
a hologram or picture of the dog. AI needs the relation between the
man and the appearance of a dog, the relation between the man and
the dog and also the relation between dogs and appearances of them.
Advocating one of these as what “seeing really is” is unfruitful.

natural kinds The entities the robot must refer to often are rich with prop-
erties the robot cannot know all about. The best example is a natural
kind like a lemon. A child buying a lemon at a store knows enough
properties of the lemons that occur in the stores he frequents to dis-
tinguish lemons from other fruits in the store. Experts know more
properties of lemons, but no-one knows all of them. AI systems also
have to distinguish between sets of properties that suffice to recognize
an object in particular situations and the natural kinds of some objects.

To a child, all kinds are natural kinds, i.e. kinds about which the child
is ready to learn more. The idea of a concept having an if-and-only-if
definition comes later—perhaps at ages 10–13. Taking that further,
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natural kind seems to be a context relative notion. Thus some part
of income tax law is a natural kind to me, whereas it might have an
if-and-only-if definition to an expert.

Curiously enough, many of the notions studied in philosophy are not
natural kinds, e.g. proposition, meaning, necessity. When they are
regarded as natural kinds, then fruitless arguments about what they
really are take place. AI needs these concepts but must be able to work
with limited notions of them.

approximate entities Many of the philosophical arguments purporting to
show that naive common sense is hopelessly mistaken are wrong. These
arguments often stem from trying to force intrinsically approximate
concepts into the form of if-and-only-if definitions.

Our emphasis on the first class character of approximate entities may
be new. It means that we can quantify over approximate entities and
also express how an entity is approximate. (McCarthy 2000) treats
approximate concepts and approximate theories.

compatibility of determinism and free will A logical robot needs to con-
sider its choices and the consequences of them. Therefore, it must
regard itself as having free will even though it is a deterministic device.

We discuss our choices and those of robots by considering non-determinist
approximations to a determinist world—or at least a world more deter-
minist than is needed in the approximation. The philosophical name
for this view is compatibilism. I think compatibilism is a requisite for
AI research reaching human-level intelligence.

In practice, regarding an observed system as having choices is necessary
when ever a human or robot knows more about the relation of the
system to the environment than about what goes on within the system.
This is discussed in (McCarthy 1996c).

mind-brain distinctions I’m not sure whether this point is philosophical
or scientific. The mind corresponds to software, perhaps with an in-
ternal distinction between program and knowledge. Software won’t do
anything without hardware, but the hardware can be quite simple. In
particular, the hardware usually need not have any knowledge. Some
hardware configurations can run many different programs concurrently,
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i.e. there can be many minds in the same computer body. Software can
also interpret other software. The distinction is less in humans than in
computers.

3.2 Scientific Presuppositions

Some of the premises of logical AI are scientific in the sense that they are
subject to scientific verification. This may also be true of some of the premises
listed above as philosophical.

innate knowledge The human brain has important innate knowledge, e.g.
that the world includes three dimensional objects that usually persist
even when not observed. This was learned by evolution. Acquiring
such knowledge by learning from sense data will be quite hard. It is
better to build it into AI systems.

Different animals have different innate knowledge. Dogs can know
about permanent objects and will look for them when they disappear
behind an obstacle. Quite possibly, cockroaches don’t know about ob-
jects and react only to what they sense..

Identifying human innate knowledge has been the subject of recent psy-
chological research. See (Spelke 1994) and the discussion in (Pinker 1997)
and the references Pinker gives. In particular, babies and dogs know
innately that there are permanent objects and look for them when they
go out of sight. We’d better build that in to our robots.

middle out Humans deal with middle-sized objects and develop our knowl-
edge up and down from the middle. Formal theories of the world must
also start from the middle where our experience informs us. Efforts to
start from the most basic concepts, e.g. to make a basic ontology are
unlikely to succeed as well as starting in the middle. The ontology must
be compatible with the idea that the basic entities in the commonsense
ontology are not the basic entities in the world. More basic entities
in the world, e.g. atoms and quarks, are known less well and are less
observable than the middle entities.

universality of intelligence Achieving goals in the world requires that an
agent with limited knowledge, computational ability and ability to ob-
serve use certain methods. This is independent of whether the agent
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is human, Martian or machine. For example, playing chess-like games
effectively requires something like alpha-beta pruning.

universal expressiveness of logic This is a proposition analogous to the
Turing thesis that Turing machines are computationally universal—
anything that can be computed by any machine can be computed by
a Turing machine. The expressiveness thesis is that anything that can
be expressed, can be expressed in first order logic. Some elaboration of
the idea is required before it will be as clear as the Turing thesis.4

sufficient complexity yields essentially unique interpretations A robot
that interacts with the world in a sufficiently complex way gives rise to
an essentially unique interpretation of the part of the world with which
it interacts. This is an empirical, scientific proposition, but many peo-
ple, especially philosophers (see (Quine 1969), (Putnam 1975), (Dennett 1971),
(Dennett 1998)), take its negation for granted. There are often many
interpretations in the world of short descriptions, but long descriptions
almost always admit at most one.

The most straightforward example is that a simple substitution cipher
cryptogram of an English sentence usually has multiple interpretations
if the text is less than 21 letters and usually has a unique interpretation
if the text is longer than 21 letters. Why 21? It’s a measure of the
redundancy of English. The redundancy of a person’s or a robot’s
interaction with the world is just as real—though clearly much harder
to quantify.

Second argument from cryptanalysis It would be nice if we could learn
about the world as Descartes proposed to do by starting with nothing
and building our ideas a step at a time, verifying each idea as it was
introduced. Sometimes that’s possible, but many important ideas are
discovered as complex packages of theory and connections to possible
observations or experiment. The verification is of the package as a
whole, not of each part separately. A really simple example is Barbara
Grosz’s “The clock on the wall” when there are several clocks and
several walls, but just one wall has a clock.

4First order logic isn’t the best way of expressing all that can be expressed any more
than Turing machines are the best way of expressing computations. However, with set
theory, as formalized in first order logic, what can be expressed in stronger systems can
apparently also be expressed.
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It will not be easy to make AI systems that make up and verify complex
theories as wholes.

We expect these philosophical and scientific presuppositions to become
more important as AI begins to tackle human level intelligence.
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Chapter 4

COMMON
SENSE—INFORMAL

The main obstacle to getting computer programs with human level intel-
ligence is that we don’t understand yet how to give them common sense.
Without common sense, no amount of computer power will give human level
intelligence. Once programs have common sense, improvements in computer
power and algorithm design will be directly applicable to making them more
intelligent.

This chapter is an informal summary of various aspects of common sense.
Formalisms will be given in later chapters.

4.1 What is common sense?

Common sense is a certain collection of reasoning abilities, perhaps other
abilities, and knowledge.

In (McCarthy 1959) I wrote that the computer programs that had been
written up to 1958 lacked common sense. Common sense has proved to be
a difficult phenomenon to understand, and most programs of 2004 also lack
common sense or have only a little. In the 1959 paper, I wrote “We shall
therefore say that a program has common sense if it automatically de-
duces for itself a sufficiently wide class of immediate consequences
of anything it is told and what it already knows.”1

1At least much that people consider obvious is not deduced.

49
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Programs with common sense à la (McCarthy 1959) are still lacking, and,
moreover, the ideas of that paper are not enough. Logical deduction is insuf-
ficient, and nonmonotonic reasoning is required. Common sense knowledge
is also required.

Here’s what I think is a more up-to-date formulation.
A program has common sense if it has sufficient common sense

knowledge of the world and suitable inference methods to infer a
sufficiently wide class of immediate consequences of anything it is
told and what it already knows.

Requiring some intelligence as part of the idea of common sense gives
another formulation.

A program has common sense if it can act effectively in the com-

mon sense informatic situation, using the available information to
achieve its goals.

4.2 The common sense informatic situation

A program that decides what to do has certain information built in, gets
other information from its inputs or observations; still other information is
generated by reasoning. Thus it is in a certain informatic situation. If the
information that has to be used has a common sense character, it will be in
what we call the common sense informatic situation.

We need to contrast the common sense informatic situation with the less
general bounded informatic situations.

Formal theories in the physical sciences deal with bounded informatic
situations. A scientist decides informally in advance what phenomena to
take into account. For example, much celestial mechanics is done within
the Newtonian gravitational theory and does not take into account possible
additional effects such as outgassing from a comet or electromagnetic forces
exerted by the solar wind. If more phenomena are to be considered, scientists
must make new theories—and of course they do.

Likewise present AI formalisms work only in a bounded informatic situ-
ations. What phenomena to take into account is decided by a person before
the formal theory is constructed. With such restrictions, much of the reason-
ing can be monotonic, but such systems cannot reach human level ability. For
that, the machine will have to decide for itself what information is relevant,
and that reasoning will inevitably be partly nonmonotonic.
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One example is the “blocks world” where the position of a block x is
entirely characterized by a sentence At(x, l) or On(x, y), where l is a location
or y is another block. The language does not permit saying that one block
is partly on another.

Another example is the MYCIN (Davis et al. 1977) expert system in
which the ontology (objects considered) includes diseases, symptoms, and
drugs, but not patients (there is only one), doctors or events occurring in
time. Thus MYCIN cannot be told that the previous patient with the same
symptoms died. See (McCarthy 1983) for more comment.

Systems in a bounded informatic situation are redesigned from the outside
when the set of phenomena they take into account is inadequate. However,
there is no-one to redesign a human from the outside, so a human has to be
able to take new phenomena into account. A human-level AI system needs
the same ability to take new phenomena into account.

In general a thinking human is in what we call the common sense infor-
matic situation. The known facts are necessarily incomplete. 2 There is no
a priori limitation on what facts are relevant. It may not even be clear in
advance what phenomena should be taken into account. The consequences
of actions cannot be fully determined.

An astrophysicist can learn that computing the orbit of a comet during
its passage near the sun requires taking into account the forces resulting
from gases boiled of the comet by the sun’s heat. He can either deal with
this informally, regarding the orbit as somewhat uncertain, or he can make a
new mathematical theory taking outgassing into account. In either case, he
remains outside the theory. Not only that, he can look at his own thinking
and say, “How dumb I was not to have noticed . . . .”

Should it be needed, a human manipulating blocks can discover or be
told that it is necessary to deal with configurations in which one block is
supported by two others.

2We live in a world of middle-sized objects which can only be partly observed. We only
partly know how the objects that can be observed are built from elementary particles in
general, and our information is even more incomplete about the structure of particular
objects. These limitations apply to any buildable machines, so the problem is not just one
of human limitations.

Science fiction and scientific and philosophical speculation have often indulged in the
Laplacian fantasy of super-beings able to predict the future by knowing the positions and
velocities of all the particles. That isn’t the direction to go. Rather the super-beings
would be better at using the information that is available to the senses—maybe having
more and more sensitive senses.
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MYCIN’s lack of common sense is yet more blatant, because its language
cannot represent facts about events occurring in time.

The common sense informatic situation has the following features.

1. The theory used by the agent is open to new facts and new phenomena.

2. The objects and other entities under consideration are incompletely
known and are not fully characterized by what is known about them.

3. Most of the entities considered are intrinsically not fully defined.

4. In general the informatic situation itself is an object about which facts
are known. This human capability is not used in most human reasoning,
and very likely animals don’t have it.

The difficulties imposed by these requirements are the reason why the
goal of Leibniz, Boole and Frege to use logical calculation as the main way
of deciding questions in human affairs has not yet been realized. Realizing
their goal will require extensions to logic beyond those required to reason in
bounded informatic situations. Computer programs operating in the common
sense informatic situation also need tools beyond those that have been used
so far.

Here are some of the characteristics of such systems and some of the tools.

elaboration tolerance The languages used require elaboration tolerance.
It must be possible to add facts without scrapping the theory and
starting over. Elaboration tolerance seems to impose requirements on
the languages used, i.e. on the set of predicate and function symbols.

nonmonotonic reasoning Elaboration tolerance imposes one requirement
on the logic, and this is the ability to do nonmonotonic reasoning. The
system must reach conclusions that further facts not contradicting the
original facts are used to correct.

Taking into account only some of the phenomena is a nonmonotonic
reasoning step. It doesn’t matter whether phenomena not taken into
account are intentionally left out or if they are unknown to the reasoner.

While nonmonotonic reasoning is essential for both man and machine,
it can lead to error when an important fact is not taken into account.
These are the errors most often noticed.
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approximate concepts and approximate objects The common sense in-
formatic situation necessitates the use of approximate concepts that
cannot be fully defined and the use of approximate theories involving
them.

reasoning in contexts and about contexts In bounded theories, the con-
text is fixed at the time the theory is created. Therefore, the reasoner
doesn’t have to switch contexts. For example, the theorists undertakes
to decide on a consistent notation. There are exceptions to this in com-
puter programming wherein information is encapsulated in classes, but
the external behavior of the classes is prescribed by the designer.

An agent in the common sense informatic situation is often confronted
with new contexts.

approximate objects

composition of objects Consider an object composed of parts. It is con-
venient logically when what we knew about the parts and how they are
put together enables us to determine the behavior of the compound

3Here’s an extended example from the history of science.
Starting in the middle of the 19th century, Lord Kelvin (William Thomson) undertook

to set limits on the age of the earth. He had measurements of the rate of increase of
temperature with depth and of the thermal conductivity of rock. He started with the
assumption that the earth was originally molten and computed how long it would have
taken for the earth to cool to its present temperature. He also took into account gravita-
tional contraction as a source of energy. He obtained numbers like 25 million years. This
put him into conflict with geologists who already had greater estimates based on counting
annual layers in sedimentary rock.

Kelvin’s calculations were correct but gave the wrong answer, because no-one until
Becquerel’s discovery in 1896 knew about radioactive decay. Radioactive decay is the
main source of energy that keeps the earth hot.

Kelvin’s reasoning was nonmonotonic. Namely, he took into account all the sources of
energy the science of the day knew about.

Nonmonotonic reasoning is necessary in science as in daily life. There can always be
phenomena we don’t know about. Indeed there might be another source of energy in the
earth besides radioactivity.

Experience tells us that careful nonmonotonic reasoning, taking into account all the
sources of information we can find and understand, usually gives good results, but we can
never be as certain as we can be of purely mathematical results.
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object. Indeed this is often true in science and engineering and is of-
ten the goal of the search for a scientific theory. The common sense
informatic situation is not so convenient logically. The properties of an
object are often more readily available than the properties of the parts
and their relations. Formalizations of facts about the relation between
structured objects and their parts must not require that all facts about
the objects be inferred from known facts about the parts.

A person knows that a certain object is composed of parts. He knows
something about the structural relations and about the parts. Phys-
ically, the parts and their relations make up the object. If we knew
all about these, we would know the object and its potential behavior.
However, actual knowledge often runs the other way. We know more
about the object than about its parts.

For example, a baseball has a visible and feelable surface, and we can
see and feel the seams and can feel its compliance and its simplest
heat transfer properties. We also know, from reading or from seeing
a baseball disassembled, something about its innards. However, this
knowledge of structure is less usable than the knowledge of the baseball
as a whole.

It would be logically simpler if we knew about the structures of the
objects in our environment and could establish the properties of the
whole object from its structure. Thus it is quite pleasing that the
properties of molecules follow from the properties of atoms and their
interactions. Unfortunately, the common sense world is informatically
more complex. We learn about complex objects and go from there to
their structures and can only partly discover the structures.

This is not any kind of grand complementarity of the kind Bohr and his
followers mistakenly tried to extend from quantum mechanics where it
is one usable perspective. Moreover, this limitation on knowledge will
apply to robots in a similar way as to humans.

This phenomenon, of often knowing more about the whole than about
the parts, applies to more than physical objects. It can apply to pro-
cesses. The phenomenon even existed in mathematics. Euclid’s ge-
ometry was a powerful logical structure, but the basic concepts were
fuzzy.

Formalization of facts about the relation between structured objects
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and their parts must not require that all facts about the objects be
inferred from known facts about the parts.

knowledge of physical objects

knowledge of regions in space

knowledge of other actors

introspective knowledge

bounded informatic situations in contexts Bounded informatic situa-
tions have an important relation to the common sense informatic sit-
uation. For example, suppose there are some blocks on a table. They
are not perfect cubes and they are not precisely aligned. Nevertheless,
a simple blocks world theory may be useful for planning building a
tower by moving and painting blocks. The bounded theory of the sim-
ple blocks world in which the blocks are related only by the on(x, y, s)
relation is related to the common sense informatic situation faced by
the tower builder. This relation is conveniently expressed using the
theory of contexts as objects discussed in Chapter . The blocks world
theory holds in a subcontext cblocks of the common sense theory c,
and sentences can be lifted in either direction between c and cblocks.

4.3 Localization

Maybe this section should be moved closer to discussions of nonmonotonic
reasoning.

We do not expect events on the moon to influence the physical location
of objects on the table. However, we can provide for the possibility that
an astronomer looking through a telescope might be so startled by seeing a
meteorite collide with the moon that he would fall off his chair and knock an
object off the table. Distant causality is a special phenomenon. We take it
into account only when we have a specific reason.

Closer to hand, we do not expect objects not touching or connected
through intermediate objects to affect each other. Perhaps there is a lot
of common sense knowledge of the physical motion of table scale ojects and
how they affect each other that needs to be expressed as a logical theory.
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4.3.1 The objects that are present

In Section ?? on circumscription, we discussed what objects can fly. We have

¬Ab Aspect1 x → ¬flies x,
Bird x → Ab Aspect1 x,
Bird x ∧ ¬Ab Aspect2 x → flies x,
Penguin x → Bird x,
Penguin x → Ab Aspect2 x
, Penguin x ∧ ¬Ab Aspect3 x → ¬flies x, etc.

(4.1)

When we do the circumscription we certainly want to vary flies. If we
leave the predicates bird and penguin constant and vary only flies, we con-
clude that the objects that fly are precisely the birds that are not penguins.

If we are reasoning within a sufficiently limited context this is ok. How-
ever, we can’t have it in a general purpose common sense knowledge base,
because it excludes bats and airplanes from fliers and ostriches from the
non-fliers.

4.4 Remarks

Scientists and philosophers of science have often criticized common sense as
inferior science. Indeed common sense notions of falling bodies not incorpo-
rating the discoveries of Galileo and his successors give wrong answers.4

Consider the fact that a glass dropped from a table will hit the floor,
perhaps hard enough to shatter. Galileo tells us the falling will take a little
less that 1/2 seconds, but we haven’t much use for this fact in cautioning
ourselves to avoid pushing the glass off the table. The common sense notions
of physics are needed by a robot that can function in a home. Very likely if
we could compute faster and estimate distances and times quantitatively, we
could get substantial advantage from knowledge of elementary mechanics.
Since we can’t, humans have to make do with qualitative reasoning and
practice skills that have some quantitative elements which are present but
not explicit.

4One service mathematics has rendered to the human race. It has put common sense
back where it belongs, on the topmost shelf next to the dusty canister labelled ‘discarded
nonsense’. —E. T. Bell. What did Bell mean by common sense?
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A person or program has common sense if it can act effectively in the com-
mon sense informatic situation, using the available information to achieve its
goals.

Achieving human-level AI faces a problem that is generally ignored in
building scientific theories and in philosophy. The theory builder or the
philosopher of science discusses theories from the outside. However, for an
AI system of human level, there is no outside. All its reasoning, including its
metamathematical reasoning must be done in its own language, just as we
humans discuss human reasoning in our own languages.

Common sense operates in a world with the following characteristics.
Humans and robots that humans build are middle-sized objects in a phys-

ical world that contains other purposeful entities. We have common sense
information about this world and our possibilities for action and we need to
give our robots this common sense information. This information is partial
and will usually be partly wrong. We are, and our robots will be in the ¡em¿
common sense informatic situation¡/em¿.

Distinguish between the facts about the world, which include atomic
structure and how general relativity interacts with quantum mechanics and
what facts are available for common sense use.

Basic facts about the Common sense informatic situation

1. The world in which common sense operates has the aspects described
in the following items.

2. Situations are snapshots of part of the world.

3. Events occur in time creating new situations. Agents’ actions are
events.

4. Agents have purposes they attempt to realize.

5. Processes are structures of events and situations.

6. 3-dimensional space and objects occupy regions. Embodied agents, e.g.
people and physical robots are objects. Objects can move, have mass,
can come apart or combine to make larger objects.

7. Knowledge of the above can only be approximate.

8. The csis includes mathematics and physics, i.e. abstract structures and
their correspondence with structures in the real world.
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9. Common sense can come to include facts discovered by science. Exam-
ples are conservation of mass and conservation of volume of a liquid.

10. Scientific information and theories are imbedded in common sense in-
formation, and common sense is needed to use science.

The common sense informatic situation includes at least the following.

1. The facts that may have to be used to decide what to do are not limited
to an initially given set. New facts may have to be obtained.

2. The set of concepts required to act intelligently in a situation may have
to be extended.

3. The ability to take into account new facts without complete reorganiza-
tion of the knowledge base is called ¡EM¿elaboration tolerance.¡/EM¿
The need for elaboration tolerance affects the logical formalisms.

4. Introspection about the methods one has been using may be required.
Indeed the complete mental state up to the present moment sometimes
has to be regarded as an object that can be reasoned about.

4.4.1 Refinement

Here are some truisms. They are all obvious, but formalisms must take them
into account, and how to do this is often not obvious.

Consider a person’s knowledge of his body.
He can see his arms, legs and other external parts. He cannot see his liver

or his brain, but this is an accident of the senses humans happen to have.
If we had ultrasonic detection abilities of bats, we might be able to see our
internal organs. Indeed with artificial aids we can see them.

The organs are made up of tissues. Common sense knows little of them,
but medical science knows a lot.

The tissues are made of cells. A lot is known about this.
Cells have a structure above the level of molecules, but not much is known

about this.
Once we get down to the domain of molecules we are in chemistry which

is based on atomic physics.
Below that is elementary particle physics. Whether that is the bottom is

unknown.
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Objects depend for their integrity and for their perceivable qualities on
certain processes going on within them and between them and their neigh-
bors. All material objects depend on the motion of their molecules for their
temperatures, and their structural integrity often depends on temperature.

Human common sense can deal with all these phenomena. Some objects
we can perceive well, others partly and others not at all. We are aware of
objects as structured from parts.
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Chapter 5

MATHEMATICAL LOGIC

5.1 Monotonic Mathematical Logic

A logical robot decides what to do by reasoning logically that a certain action
will advance its goals. As we have emphasized, some of the reasoning will
be nonmonotonic. However, conventional monotonic logic will do most of
the reasoning and also provides the framework for developing nonmonotonic
reasoning. Therefore, the basis of logical AI is conventional mathematical
logic.

Mathematical logicians have developed elegant notations for logic, includ-
ing the parts used in AI—mainly first order logic and set theory. They have
optimized readability for people, having no more notation than necessary
and convenient for informal proofs of metatheorems, e.g. completeness, etc.
Computer scientists have also developed a wide variety of logical notations
and have made many systems. In many of them, (semantic nets, Horn logic,
) expressive power has been sacrificed to make the machine computation
easier.

Logical AI needs different emphases from those appropriate for research
in mathematical logic and also from those appropriate for most applications
of logic in computer engineering, e.g. database languages, designing and
verifying digital circuits.

1. A representation that makes programs that manipulate logical expres-
sions easy to write. Lisp lists are good for this. They are also reason-
ably readable as is. If wanted, their readability and writability can be
enhanced by using translators into a more optimally readable notation

61
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on the screen or on paper. Less thought has gone into ease of writing
than into ease of reading, but computers can help us here also.1

2. A rich vocabulary. Russell and Whitehead’s Principia Mathematica
had a richer vocabulary than later systems, because their objective
was proving theorems within the system. Later this was replaced by
the metamathematical objective of proving theorems about the system.
Since a logical robot must do its reasoning within the system we install
in it, that system must be rich in expressiveness. It is not good enough
to give it a facility for making definitions if each defined concept must
have its definition expanded before it is used.

3. Heavy duty set theory. [see writeup] /u/jmc/f87/heavy also checker-
board.

4. Proper treatment of comprehension. Frege’s original comprehension
axiom allowed the definition P (x) ≡ <formula>, where <formula>
does not contain P . This allows Russell’s paradox defining bad(x) ≡
¬x(x) yielding the contradiction bad(bad) ≡ ¬bad(bad). The immedi-
ate problem was fixed by Zermelo in his set theory. In the notation of
set theory we would like to write {x|<formula>} to define the set of
x’s satisfying <formula>, but this leads again to Russell’s paradox.
Zermelo allowed only the restricted comprehension principle that gives
the set {x ∈ A|<formula>}, where A is a previously defined set. This
proved a bit too weak, and Fraenkel added the stronger but more awk-
ward replacement schema that gives the image of a set by a function
formula as a set. This is the system ZF.

1The lisp expression (forall (x) (implies (p x) (q x))) is conveniently read in the form
∀x.p(x) → q(x) In a context of writing logical expressions involving predicates of one
argument, it might be typed “ax.px i qx”, thus reducing the amount of typing. In the
pre-computer world, the notation chosen has to be a compromise between readability
and writability. Once we have computers convenience of describing computations and
speed of the programs that carry out the computations with symbolic expression are also
considerations. (With computers built since 1960, the speed of translation to and from
notations convenient for people is not an issue.)

Read and print programs can permit the most convenient notation for each purpose to
be used. This assumes that the user takes the time to learn all three kinds of notation
and doesn’t forget them. Occasional users might be better off with a single notation.
Actually Lisp programmers have chosen to write in Lisp list notation rather than in the
more conventional mathematical notations that were offered in some early systems. This
surprised me.
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A logical robots must use comprehension principle as the main tool for
extending its collection of sets. Present logical AI computational sys-
tems have mainly confined themselves to first order logic. In particular,
they have not used any form of comprehension that permits making a
set (or predicate) from an arbitrary property. I suppose this is mainly
because it seems difficult to make a system that will invent properties.
Inventing properties is a necessary step on the path to human-level
AI. My article (McCarthy 1964) discusses the standard but creative
solution to the mutilated checkerboard problem which involves intro-
ducing the colors of the squares, a property not present in the initial
formulation of the problem.

5. In order to get convenient decideability in a subdomain, don’t restrict
the language. Instead restrict the reasoner to making appropriate in-
ferences. There will be some cost, say a factor of 5, in speed, but
the results of the restricted reasoning will then be available for more
general reasoning. Reasoning about this requires that facts about the
reasoning algorithms be expressible as sentences that can be reasoned
with.

5.2 Set theory

The plan is to use Zermelo-Fraenkel set theory, abbreviated ZF, to express
what a robot knows. Set theory is usually presented in first order logic, but
we will go to higher order logic when it is convenient. In particular, second
order logic is convenient for nonmonotonic reasoning. Our set theory will
include as basic some functions of sets usually omitted from ZF, because
they are definable.

The advantage for AI of set theory over just using first order logic is that
the operations that form new sets from old ones are convenient for building
new common sense concepts from old ones.

The most important operation is comprehension which forms the set of
objects having a given property.

{x|φ(x)} is the set of xs having the property φ.

φ can be an arbitrary property. As we shall see, an application of compre-
hension is often the way of introducing a creative idea to reasoning. On the
other hand, comprehension makes difficulty for theorem proving programs,
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because they would have to choose among an arbitrary set of properties. My
opinion is that this difficulty must be faced in order to achieve human-level
AI.

Here are some examples.

1. Let father(x, y) be the assertion that x is the father of y. We then
have

sons(x) = {x|father(x, y)}
number-sons(x) = card(sons(x))
middle-sons(x) = {y|father(x, y) ∧ (∃zw)father(x, z) ∧ father(x,w)
∧older(z, y) ∧ older(y, w)}

(5.1)

2. The transitive closure of a relation R(x, y) is the intersection of all
transitive relations R′ containing R, i.e. they must satisfy

(∀x y)(R(x, y) → R′(x, y)
∧
(∀x y z)(R′(x, y) ∧ R′(y, z) → R′(x, z)).

However, this isn’t enough to get the intersection.

3. The mutilated checkerboard problem.

An 8 by 8 checkerboard with two diagonally opposite squares removed
cannot be covered by dominoes each of which covers two rectilinearly
adjacent squares. We present a set theory description of the proposition
and an informal proof that the covering is impossible. While no present
system that I know of will accept either the formal description or the
proof, I claim that both should be admitted in any heavy duty set
theory.2

We have the definitions

Board = Z8 × Z8. (5.2)

2The Mizar proof checker accepts the definitions essentially as they are, but the first
proof in Mizar is 400 lines.
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In set theory Z8 is a standard name for the natural numbers from 0 to
7.

mutilated-board = Board − {(0, 0), (7, 7)}. (5.3)

This formula uses three of the tools of set theory. (0, 0) and (7, 7) are
ordered pairs. In ZF proper, the ordered pair is a defined operation.
In a heavy duty set theory (HDST), forming an ordered pair will be
built in. {(0, 0), (7, 7)} is the two element set consisting of (0, 0) and
(7, 7). Forming a set with given elements is a basic operation. Finally,
we have used the minus sign for the operation of set difference. This
again is a defined operation in ZF. Indeed we can write X−Y = {x|x ∈
X ∧ ¬(x ∈ Y )}. HDST will also have set difference built in.

domino-on-board(x) ≡ (x ⊂ Board) ∧ card(x) = 2
∧(∀x1 x2)(x = {x1, x2} → adjacent(x1, x2))

(5.4)

domino-on-board(x) ≡ x ⊂ Board
∧(∃x1 x2)(x = {x1, x2} ∧ adjacent(x1, x2))

(5.5)

and

adjacent(x1, x2) ≡ |c(x1, 1) − c(x2, 1)| = 1
∧c(x1, 2) = c(x2, 2)
∨|c(x1, 2) − c(x2, 2)| = 1 ∧ c(x1, 1) = c(x2, 1).

(5.6)

If we are willing to be slightly tricky, we can write more compactly

adjacent(x1, x2) ≡ |c(x1, 1)−c(x2, 1)|+|c(x1, 2)−c(x2, 2)| = 1,(5.7)

but then the proof might not be so obvious to the program.

Next we have.

partial-covering(z)
≡ (∀x)(x ∈ z ⊃ domino-on-board(x))
∧(∀x y)(x ∈ z ∧ y ∈ z ⊃ x = y ∨ x ∩ y = {})

(5.8)
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Theorem:

¬(∃z)(partial-covering(z) ∧
⋃

z = mutilated-board) (5.9)

Proof:

We define

x ∈ Board ⊃ color(x) = rem(c(x, 1) + c(x, 2), 2) (5.10)

domino-on-board(x) ⊃
(∃u v)(u ∈ x ∧ v ∈ x ∧ color(u) = 0 ∧ color(v) = 1),

(5.11)

partial-covering(z) ⊃
card({u ∈

⋃
z|color(u) = 0})

= card({u ∈
⋃

z|color(u) = 1}),
(5.12)

card({u ∈ mutilated-board|color(u) = 0})
6= card({u ∈ mutilated-board|color(u) = 1}),

(5.13)

and finally

¬(∃z)(partial-covering(z) ∧ mutilated-board =
⋃

z) (5.14)

A practical HDST needs a substantial initial theorem base—essentially
those theorems a mathematician will use freely, often without even appealing
to them formally.

We begin with Dedekind’s recursion theorem of 1888. As expressed in
(H.-D. Ebbinghaus 1991), the theorem is

Let A be an arbitrary set containing an element a ∈ A, and g a given
mapping g : A → A of A into itself. Then there is one and only one mapping
ϕ : N → A with the two properties ϕ(0) = a and ϕ ◦ S = g ◦ ϕ. Here S is
the successor operation on the set N of natural numbers. The proof is long
enough so that it should not be repeated every time the theorem is used.
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5.2.1 Fregean set theory

Human thinking, even in mathematics, often works by uninhibited specula-
tion aiming at a promising result. If no promising result is obtained by a
particular line of speculation, the investment that has to be abandoned is
smaller than if the line of reasoning had been carried out rigorously. If the
result of the speculation looks good, an effort is made to put the reasoning
on a sound footing.

The logic of Frege’s (?) Begriffschrift was inconsistent, as Bertrand Rus-
sell pointed out to him in 1901. We present a set theory based on this logic
which is also inconsistent, but may be suitable for the exploratory phase of
reasoning. 3

Fregean set theory, call it FR, lets the reasoner speculate by allowing
unrestricted comprehension. Thus it allows the term {x|E(x)}, where E(x)
is an arbitrary open sentence in x instead of just {x ∈ A|E(x)} with A a
previously defined set. Fregean set theory is inconsistent, because we can
form the set {x|x 6∈ x} and get a contradiction by asking whether {x|x 6∈
x} ∈ {x|x 6∈ x}. However, our reasoner need not form that set or any other
contradictory set.

Suppose it reaches a promising conclusion p. Because of the possibility
that it got there via a contradiction, p is not certain, but it can try to validate
the proof by replacing it by a proof in ZFC. This can save computation,
because proof attempts that fail in FR, i.e. don’t reach a valued conclusion,
cost less computation than in ZFC. There will be many more failures than
successes.

A lot depends on the theorem proving or problem solving program that

3Here’s an example of correctable speculative reasoning from chess.
Consider the move h2-h3 (i.e. P-KR3) early in the game. It is usually a pointless move,

but the programs all include it because it is sometimes good. Its usefulness is sometimes
to drive away a black bishop on g4 and sometimes to prevent the bishop from moving to
g4. Another use is to give the white king an escape square. Nevertheless, it is usually a
bad move. Deep Blue may examine this move 109 times at various points in the move tree
in deciding on a particular move, in almost all positions concluding that the move is bad.

Deep Blue, like all chess programs that I know about, scans the move tree once except
for iterative deepening. Consider a chess program that ignores h2-h3 but can redo the
calculation including the move. It would put the move in the new calculation if the
preceding calculation had black profitably putting a bishop on g4 or profitably attacking
the white king in a castled position on the king’s side.

Chess programs could play with much less computation if they used bold speculation
followed by careful checking of good lines.
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uses FR. A perverse prover would immediately derive the contradiction and
from that derive whatever might be wanted. Such proofs could not be re-
paired in ZFC.

FR has many fewer axioms than ZFC, because many of the axioms of
ZFC assert the existence of sets that would be terms of FR.

Here are the axioms of ZFC and their FR counterparts.

extensionality (∀x y)(x = y ≡ (∀z)(z ∈ x ≡ z ∈ y)). This is still needed
in FR.

null set Unnecessary: {x|false} is a perfectly good term.

pairing Unnecessary: {z|z = x ∨ z = y} is a term.

power set Unnecessary: {z|z ⊂ x} is a term.

union Unnecessary: {z|(∃y)(z ∈ y ∧ y ∈ x)} is a term.

infinity needed, because the infinite set asserted to exist is not given by
a term. I’d like a more ambitious axiom that immediately gives the
existence of recursively defined functions and sets rather than requiring
somewhat lengthy proofs required starting with the standard axiom.

foundation Needed if infinite descending chains of sets are to be forbidden.
I’m presently neutral on this point.

choice seems to be needed (if wanted)

comprehension replaced by the more general set former {x|E{x}}, where
E{x} is an arbitrary open formula involving x and possibly other free
variables.

replacement Unnecessary: {z|(∃y)(y ∈ A ∧ z = f(y))}, where f is a func-
tion term is the term wanted. We need to be able to form function
terms.

Fregean set theory is inconsistent because of Russell’s paradox. Namely,
consider the set π defined by π = {x|x 6∈ x}. We have immediately π ∈ π ≡
π 6∈ π.

Suppose we have a proof (or our program has a proof) in FR of some
interesting result. We or it can’t be sure the result is correct. However, the
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proof may be translatable to a proof in ZFC. Occurrences of the Fregean
set former may be translatable to the ZFC set formers—comprehension and
replacement.

Thus FR has just the axioms of extensionality, infinity and choice and
the Fregean set former {x|E{x}} are replaced by instances of {x ∈ A|E{x}},
where A is a previously defined set. We can expect that the other axioms of
ZFC, e.g. the power set axiom, will be required to get A. In some proofs we
will have to use the replacement axiom schema.

It could turn out that it is just as convenient to have the program explore
ZFC derivations in the first place, but it seems to me that FR is closer to
the way mathematicians and other people think.

Since FR is inconsistent, there is no obvious way of giving it any seman-
tics.

5.3 Why set theory?

5.4 Some topics: to be included in revised

form

Here are some important topics.

1. Propositional calculus

2. Interpretations, models, soundness and completeness

3. First order logic

4. Second order and higher order logics

5. Set theory, simple and extended

6. Computability and computational complexity

7. Extensions: conditional expressions,

8. Logic of programs

9. Logic programs

10. Partial predicates and functions
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11. Theorem provers and problem solvers

5.4.1 Second order logic

Second order formulas have proved convenient for formalizing many kinds of
nonmonotonic reasoning. For example, a standard way of writing circum-
scription is

A(P,Z) ∧ (∀pz)(A(p, z) → ¬p < P ). (5.15)

The quantifier (∀pz) quantifies over the predicate variable p and the vari-
able z which may also be a predicate variable. In simple cases, it is possible to
get the full force of (5.15) by making suitable substitutions for p and z—but
not in general.

It is often asserted, e.g. in (Reiter 2001) that the utility of second order
logic in AI is limited by the fact that any axiom system for second order
logic is necessarily incomplete. I think this is incorrect for formalizing com-
mon sense knowledge and reasoning. All the known sentences that are true
in second order logic but unprovable are obtained ultimately from Gödel’s
theorems about the incompleteness of Peano arithmetic. No-one has found
a theorem of conventional mathematics that one would want to prove for
which the second order axiom systems are inadequate. I’ll conjecture that
the axiom systems for second order logic are “complete enough” in a sense
yet to be determined.4

5.5 AI and the frustration theorems of logic

Starting with Gödel in 1930, mathematical logicians discovered a number of
theorems that limit what can be formalized and what can be computed. The
limitations apply to both people and computers. The theorems were formu-
lated and proved by looking at mathematical formalisms from the outside,
i.e. doing metamathematics. Getting around the limitations also requires
looking at formalisms from the outside, and human-level AI will also have

4There are complications here. Thus the consistency of Peano arithmetic is equivalent
to a certain set of Diophantine equations not having solutions in integers. Diophantine
equations are quite ordinary mathematics. Somehow a theory of “complete enough” must
be able to exclude some kinds of Diophantine equations.
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to be able to do the kind of metamathematics involved in reasoning about
these limitations.

In this section we will discuss

1. Russell’s paradox (1900) and what it did to Cantor’s set theory.

2. Gödel’s theorems of 1930.

3. Turing’s undecidability results of 1936

4. The theory of NP-completeness 1970?

5. Montague’s theorems limiting syntactic treatments of modality.

6. The independence results of set theory

We propose three tools by which AI systems can work around these
limitations—all suggested by what people do.

1. Treat whole theories as objects in metamathematical reasoning.

2. Use unjustifiably strong reasoning methods to get results that are sub-
ject to amplification in normal systems. For example, we propose
“Fregean set theory” with unrestricted comprehension for deriving re-
sults with the derivations of interesting statements later to be trans-
lated into ZFC proofs.

nonmonotonic

Gödel’s incompleteness theorem, Turing’s proof of the unsolvability of
the halting problem and Cook and Karp’s discovery of NP-completeness put
limits on what humans and machines can do. In spite of these limits, humans
manage to be intelligent, and we can make intelligent machines. There is
plenty of room for maneuver among the limitations.

Gödel’s first incompleteness theorem shows that any consistent logical
theory expressive enough for elementary arithmetic, i.e. with addition, mul-
tiplication and quantifiers could express true sentences unprovable in the
theory.

Gödel’s second incompleteness theorem tells that the consistency of the
system is one of these unprovable sentences.
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The basis of Gödel’s proof was the fact that the syntactic computations
involved in combining formulas and verifying that a sequence of formulas is
a proof can be imitated by arithmetic computations on “Gödel numbers” of
formulas. If we have axioms for symbolic computations, e.g. for Lisp compu-
tations, then the proofs of Gödel’s theorems become much shorter. Shankar
(Shankar 1986) has demonstrated this using the Boyer-Moore prover.

Among the unprovable true sentences is the statement of the theory’s
own consistency. We can interpret this as saying that the theory lacks self-
confidence. Turing, in his PhD thesis, studied what happens if we add to
a theory T the statement consis(T ) asserting that T is consistent, getting
a stronger theory T ′. While the new theory has consis(T ) as a theorem, it
doesn’t have consis(T ′) as a theorem—provided it is consistent. The process
can be iterated, and the union of all these theories is consisω(T ). Indeed the
process can again be iterated, as Turing showed, to any constructive ordinal
number.

Solomon Feferman (Feferman 1962) introduced a more powerful itera-
tion principle than Turing’s. Feferman’s principle, like Turing’s represents
expressions of confidence in what has already been done. The theory of
self-confidence principles gets extremely technical at this point. The tech-
nicalities don’t seem directly relevant to AI research, because AI programs
don’t need these high levels of self-confidence. However, they are relevant to
arguments like those advanced by Penrose about what is possible in principle
for computers. See Chapter 16.2 for more.

The discovery of NP-completeness and the subsequent development of
the theory of computational complexity was the largest single contribution
that computer science has made to mathematics. The theory has definite
but limited application to logical AI.

Consider a problem that depends on a number n, e.g. inverting an n× n
matrix or determining whether a propositional expression with of length n is
satisfiable. The first computation can be done with a number of multiplica-
tions proportional to n3 (the actual exponent being somewhat smaller). The
class of problems for which the number of operations is polynomial in the
size of the problem, n in this case, is called P.

The known algorithms for propositional satisfiability all take a number
of operations exponential in n, but no-one has shown that there isn’t an
algorithm that does it in a number of operations polynomial in n.

A proposed assignment of truth values to a propositional expression can
be checked in polynomial time. Moreover, if we imagine an algorithm that
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could go both ways every time it came to two conditions that had to be
verified, such an algorithm could test for satisfiability in polynomial time.
Algorithms that can go both ways are call non-deterministic, and problems
that can be solved in polynomial time by a non-deterministc algorithm are
form a class called NP. Solution by a non-deterministic polynomial time
algorithm amounts to proposed solutions being checkable in polynomial time.

Certain problems in NP, including propositional satisfiability, have been
shown to be NP-complete. Let A be such a problem. This means that any
problem in NP can be put into the form of an A problem in a polynomial
number of operations. Thus any NP problem can be reduced to a satisfiability
problem in a polynomial number of operations.

Maybe P = NP. This is a famous unsolved problem. Most computer sci-
entists believe that NP is not the same as P, and that NP-complete problems
require more than polynomial time in general.

There is a tendency to informally identify polynomial time with feasibility
and NP-completeness with infeasibility. This is shakey in both directions.
The power or the coefficients might be too large for feasibility in a polynomial
time algorithm. Problems of interest sometimes have only small enough
numbers of variables even though the problem is NP-complete.

5.5.1 What has computational complexity to do with
AI?

Many problems that people solve and that we want computers to solve be-
long to classes that are NP-complete. Some researchers have jumped to the
conclusion that problems people solve require exponential time when done
by computers. What this misses is that the problems people actually need
to solve may belong to polynomial time subclasses of the NP-complete class.

One result that is definitely relevant to AI is the discovery that satisfi-
ability problems are easy when there are many satisfying assignments and
also easy when the sentences are very incompatibility. The hard problems
are those on the border. The relevance to AI is that most of the satisfiability
problems that have come from common sense reasoning have been easy and
readily solved by the programs.

One problem for AI research is to identify more such subclasses of easy
problems.
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Chapter 6

Nonmonotonic Reasoning

Humans and intelligent computer programs must often jump to the con-
clusion that the objects they can determine to have certain properties or
relations are the only objects that do. Circumscription formalizes such con-
jectural reasoning.

6.1 INTRODUCTION. THE QUALIFICATION

PROBLEM

(McCarthy 1959) proposed a program with “common sense” that would rep-
resent what it knows (mainly) by sentences in a suitable logical language. It
would decide what to do by deducing a conclusion that it should perform a
certain act. Performing the act would create a new situation, and it would
again decide what to do. This requires representing both knowledge about
the particular situation and general common sense knowledge as sentences
of logic.

The “qualification problem”, immediately arose in representing general
common sense knowledge. It seemed that in order to fully represent the
conditions for the successful performance of an action, an impractical and
implausible number of qualifications would have to be included in the sen-
tences expressing them. For example, the successful use of a boat to cross a
river requires, if the boat is a rowboat, that the oars and rowlocks be present
and unbroken, and that they fit each other. Many other qualifications can
be added, making the rules for using a rowboat almost impossible to apply,
and yet anyone will still be able to think of additional requirements not yet
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stated.

Circumscription is a rule of conjecture that can be used by a person or
program for “jumping to certain conclusions”. Namely, the objects that can
be shown to have a certain property P by reasoning from certain facts A are
all the objects that satisfy P . More generally, circumscription can be used to
conjecture that the tuples < x, y..., z > that can be shown to satisfy a relation
P (x, y, ..., z) are all the tuples satisfying this relation. Thus we circumscribe
the set of relevant tuples.

We can postulate that a boat can be used to cross a river unless “some-
thing” prevents it. Then circumscription may be used to conjecture that the
only entities that can prevent the use of the boat are those whose existence
follows from the facts at hand. If no lack of oars or other circumstance pre-
venting boat use is deducible, then the boat is concluded to be usable. The
correctness of this conclusion depends on our having “taken into account”
all relevant facts when we made the circumscription.

Circumscription formalizes several processes of human informal reasoning.
For example, common sense reasoning is ordinarily ready to jump to the
conclusion that a tool can be used for its intended purpose unless something
prevents its use. Considered purely extensionally, such a statement conveys
no information; it seems merely to assert that a tool can be used for its
intended purpose unless it can’t. Heuristically, the statement is not just a
tautologous disjunction; it suggests forming a plan to use the tool.

Even when a program does not reach its conclusions by manipulating
sentences in a formal language, we can often profitably analyze its behavior
by considering it to believe certain sentences when it is in certain states, and
we can study how these ascribed beliefs change with time. See (McCarthy
1979a). When we do such analyses, we again discover that successful people
and programs must jump to such conclusions.

6.2 THE NEED FOR NONMONOTONIC REA-

SONING

We cannot get circumscriptive reasoning capability by adding sentences to
an axiomatization or by adding an ordinary rule of inference to mathematical
logic. This is because the well known systems of mathematical logic have the
following monotonicity property. If a sentence q follows from a collection A
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of sentences and A ⊂ B, then q follows from B. In the notation of proof
theory: if A ` q and A ⊂ B, then B ` q. Indeed a proof from the premisses
A is a sequence of sentences each of which is a either a premiss, an axiom or
follows from a subset of the sentences occurring earlier in the proof by one
of the rules of inference. Therefore, a proof from A can also serve as a proof
from B. The semantic notion of entailment is also monotonic; we say that
A entails q (written A |= q) if q is true in all models of A. But if A |= q and
A ⊂ B, then every model of B is also a model of A, which shows that B |= q.

Circumscription is a formalized rule of conjecture that can be used along
with the rules of inference of first order logic. Predicate circumscription
assumes that entities satisfy a given predicate only if they have to on the basis
of a collection of facts. Domain circumscription conjectures that the “known”
entities are all there are. It turns out that domain circumscription, previously
called minimal inference, can be subsumed under predicate circumscription.

We will argue using examples that humans use such “nonmonotonic”
reasoning and that it is required for intelligent behavior. The default case
reasoning of many computer programs (Reiter 1980) and the use of THNOT
in MICROPLANNER (Sussman, et. al. 1971) programs are also examples of
nonmonotonic reasoning, but possibly of a different kind from those discussed
in this paper. (Hewitt 1972) gives the basic ideas of the PLANNER approach.

The result of applying circumscription to a collection A of facts is a
sentence schema that asserts that the only tuples satisfying a predicate
P (x, ..., z) are those whose doing so follows from the sentences of A. Since
adding more sentences to A might make P applicable to more tuples, cir-
cumscription is not monotonic. Conclusions derived from circumscription
are conjectures that A includes all the relevant facts and that the objects
whose existence follows from A are all the relevant objects.

A heuristic program might use circumscription in various ways. Suppose
it circumscribes some facts and makes a plan on the basis of the conclusions
reached. It might immediately carry out the plan, or be more cautious and
look for additional facts that might require modifying it.

Before introducing the formalism, we informally discuss a well known
problem whose solution seems to involve such nonmonotonic reasoning.
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6.3 MISSIONARIES AND CANNIBALS

The Missionaries and Cannibals puzzle, much used in AI, contains more than
enough detail to illustrate many of the issues. “Three missionaries and three

cannibals come to a river. A rowboat that seats two is available. If the
cannibals ever outnumber the missionaries on either bank of the river, the
missionaries will be eaten. How shall they cross the river?”

Obviously the puzzler is expected to devise a strategy of rowing the boat
back and forth that gets them all across and avoids the disaster.

Amarel (1971) considered several representations of the problem and dis-
cussed criteria whereby the following representation is preferred for purposes
of AI, because it leads to the smallest state space that must be explored to
find the solution. A state is a triple comprising the numbers of missionaries,
cannibals and boats on the starting bank of the river. The initial state is
331, the desired final state is 000, and one solution is given by the sequence
(331,220,321,300,311,110,221,020,031,010,021,000).

We are not presently concerned with the heuristics of the problem but
rather with the correctness of the reasoning that goes from the English state-
ment of the problem to Amarel’s state space representation. A generally
intelligent computer program should be able to carry out this reasoning. Of
course, there are the well known difficulties in making computers understand
English, but suppose the English sentences describing the problem have al-
ready been rather directly translated into first order logic. The correctness
of Amarel’s representation is not an ordinary logical consequence of these
sentences for two further reasons.

First, nothing has been stated about the properties of boats or even the
fact that rowing across the river doesn’t change the numbers of missionaries
or cannibals or the capacity of the boat. Indeed it hasn’t been stated that
situations change as a result of action. These facts follow from common sense
knowledge, so let us imagine that common sense knowledge, or at least the
relevant part of it, is also expressed in first order logic.

The second reason we can’t deduce the propriety of Amarel’s represen-
tation is deeper. Imagine giving someone the problem, and after he puzzles
for a while, he suggests going upstream half a mile and crossing on a bridge.
“What bridge”, you say. “No bridge is mentioned in the statement of the
problem.” And this dunce replies, “Well, they don’t say there isn’t a bridge”.
You look at the English and even at the translation of the English into first
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order logic, and you must admit that “they don’t say” there is no bridge. So
you modify the problem to exclude bridges and pose it again, and the dunce
proposes a helicopter, and after you exclude that, he proposes a winged horse
or that the others hang onto the outside of the boat while two row.

You now see that while a dunce, he is an inventive dunce. Despairing
of getting him to accept the problem in the proper puzzler’s spirit, you tell
him the solution. To your further annoyance, he attacks your solution on the
grounds that the boat might have a leak or lack oars. After you rectify that
omission from the statement of the problem, he suggests that a sea monster
may swim up the river and may swallow the boat. Again you are frustrated,
and you look for a mode of reasoning that will settle his hash once and for
all.

In spite of our irritation with the dunce, it would be cheating to put into
the statement of the problem that there is no other way to cross the river
than using the boat and that nothing can go wrong with the boat. A human
doesn’t need such an ad hoc narrowing of the problem, and indeed the only
watertight way to do it might amount to specifying the Amarel representation
in English. Rather we want to avoid the excessive qualification and get the
Amarel representation by common sense reasoning as humans ordinarily do.

Circumscription is one candidate for accomplishing this. It will allow
us to conjecture that no relevant objects exist in certain categories except
those whose existence follows from the statement of the problem and common
sense knowledge. When we circumscribe the first order logic statement of
the problem together with the common sense facts about boats etc., we will
be able to conclude that there is no bridge or helicopter. “Aha”, you say,
“but there won’t be any oars either”. No, we get out of that as follows: It is
a part of common knowledge that a boat can be used to cross a river unless
there is something wrong with it or something else prevents using it, and if
our facts don’t require that there be something that prevents crossing the
river, circumscription will generate the conjecture that there isn’t. The price
is introducing as entities in our language the “somethings” that may prevent
the use of the boat.

If the statement of the problem were extended to mention a bridge, then
the circumscription of the problem statement would no longer permit showing
the non-existence of a bridge, i.e. a conclusion that can be drawn from
a smaller collection of facts can no longer be drawn from a larger. This
nonmonotonic character of circumscription is just what we want for this
kind of problem. The statement, “There is a bridge a mile upstream, and the
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boat has a leak.” doesn’t contradict the text of the problem, but its addition
invalidates the Amarel representation.

In the usual sort of puzzle, there is a convention that there are no ad-
ditional objects beyond those mentioned in the puzzle or whose existence is
deducible from the puzzle and common sense knowledge. The convention
can be explicated as applying circumscription to the puzzle statement and a
certain part of common sense knowledge. However, if one really were sitting
by a river bank and these six people came by and posed their problem, one
wouldn’t take the circumscription for granted, but one would consider the
result of circumscription as a hypothesis. In puzzles, circumscription seems
to be a rule of inference, while in life it is a rule of conjecture.

Some have suggested that the difficulties might be avoided by introducing
probabilities. They suggest that the existence of a bridge is improbable. The
whole situation involving cannibals with the postulated properties cannot be
regarded as having a probability, so it is hard to take seriously the conditional
probability of a bridge given the hypotheses. More to the point, we mentally
propose to ourselves the normal non-bridge non-sea-monster interpretation
before considering these extraneous possibilities, let alone their probabili-
ties, i.e. we usually don’t even introduce the sample space in which these
possibilities are assigned whatever probabilities one might consider them to
have. Therefore, regardless of our knowledge of probabilities, we need a way
of formulating the normal situation from the statement of the facts, and non-
monotonic reasoning seems to be required. The same considerations seem to
apply to fuzzy logic.

Using circumscription requires that common sense knowledge be expressed
in a form that says a boat can be used to cross rivers unless there is some-
thing that prevents its use. In particular, it looks like we must introduce
into our ontology (the things that exist) a category that includes something
wrong with a boat or a category that includes something that may prevent its
use. Incidentally, once we have decided to admit something wrong with the
boat, we are inclined to admit a lack of oars as such a something and to ask
questions like, “Is a lack of oars all that is wrong with the boat?”.

Some philosophers and scientists may be reluctant to introduce such
things, but since ordinary language allows “something wrong with the boat”
we shouldn’t be hasty in excluding it. Making a suitable formalism is likely
to be technically difficult as well as philosophically problematical, but we
must try.

We challenge anyone who thinks he can avoid such entities to express in
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his favorite formalism, “Besides leakiness, there is something else wrong with
the boat”. A good solution would avoid counterfactuals as this one does.

Circumscription may help understand natural language, because if the
use of natural language involves something like circumscription, it is un-
derstandable that the expression of general common sense facts in natural
language will be difficult without some form of nonmonotonic reasoning.

6.4 THE FORMALISM OF CIRCUMSCRIP-

TION

Let A be a sentence of first order logic containing a predicate symbol P (x1, . . . , xn)
which we will write P (x̄). We write A(Φ) for the result of replacing all oc-
currences of P in A by the predicate expression Φ. (As well as predicate
symbols, suitable λ-expressions are allowed as predicate expressions).

Definition. The circumscription of P in A(P ) is the sentence schema

A(Φ) ∧ ∀x̄.(Φ(x̄) ⊃ P (x̄)) ⊃ ∀x̄.(P (x̄) ⊃ Φ(x̄)). (6.1)

(6.33) can be regarded as asserting that the only tuples (x̄) that satisfy P
are those that have to — assuming the sentence A. Namely, (6.33) contains
a predicate parameter Φ for which we may subsitute an arbitrary predicate
expression. (If we were using second order logic, there would be a quanti-
fier ∀Φ in front of (6.33).) Since (6.33) is an implication, we can assume
both conjuncts on the left, and (6.33) lets us conclude the sentence on the
right. The first conjunct A(Φ) expresses the assumption that Φ satisfies the
conditions satisfied by P, and the second ∀x̄.(Φ(x̄) ⊃ P (x̄)) expresses the
assumption that the entities satisfying Φ are a subset of those that satisfy
P . The conclusion asserts the converse of the second conjunct which tells us
that in this case, Φ and P must coincide.

We write A `P q if the sentence q can be obtained by deduction from the
result of circumscribing P in A. As we shall see `P is a nonmonotonic form
of inference, which we shall call circumscriptive inference.

A slight generalization allows circumscribing several predicates jointly;
thus jointly circumscribing P and Q in A(P,Q) leads to

A(Φ, Ψ) ∧ ∀x̄.(Φ(x̄) ⊃ P (x̄)) ∧ ∀ȳ.(Ψ(ȳ) ⊃ Q(ȳ))

⊃ ∀x̄.(P (x̄) ⊃ Φ(x̄)) ∧ ∀ȳ.(Q(ȳ) ⊃ Ψ(ȳ))
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in which we can simultaneously substitute for Φ and Ψ. The relation A `P,Q q
is defined in a corresponding way. Although we don’t give examples of joint
circumscription in this paper, we believe it will be important in some AI
applications.

Consider the following examples:
Example 1. In the blocks world, the sentence A may be

isblock A ∧ isblock B ∧ isblock C (6.2)

asserting that A, B and C are blocks. Circumscribing isblock in (6.47) gives
the schema

Φ(A) ∧ Φ(B) ∧ Φ(C) ∧ ∀x.(Φ(x) ⊃ isblock x) ⊃ ∀x.(isblock x ⊃ Φ(x)). (6.3)

If we now substitute

Φ(x) ≡ (x = A ∨ x = B ∨ x = C) (6.4)

into (6.3) and use (6.47), the left side of the implication is seen to be true,
and this gives

∀x.(isblock x ⊃ (x = A ∨ x = B ∨ x = C)), (6.5)

which asserts that the only blocks are A, B and C, i.e. just those objects that
(6.47) requires to be blocks. This example is rather trivial, because (6.47)
provides no way of generating new blocks from old ones. However, it shows
that circumscriptive inference is nonmonotonic since if we adjoin isblock D
to (6.47), we will no longer be able to infer (6.35).

Example 2. Circumscribing the disjunction

isblock A ∨ isblock B (6.6)

leads to

(Φ(A) ∨ Φ(B)) ∧ ∀x.(Φ(x) ⊃ isblockx) ⊃ ∀x.(isblock x ⊃ Φ(x)). (6.7)

We may then substitute successively Φ(x) ≡ (x = A) and Φ(x) ≡ (x = B),
and these give respectively

(A = A∨A = B)∧∀x.(x = A ⊃ isblock x) ⊃ ∀x.(isblock x ⊃ x = A),(6.8)
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which simplifies to

isblock A ⊃ ∀x.(isblock x ⊃ x = A) (6.9)

and

(B = A∨B = B)∧∀x.(x = B ⊃ isblock x) ⊃ ∀x.(isblock x ⊃ x = B),(6.10)

which simplifies to

isblock B ⊃ ∀x.(isblock x ⊃ x = B). (6.11)

(6.9), (6.11) and (6.6) yield

∀x.(isblock x ⊃ x = A) ∨ ∀x.(isblock x ⊃ x = B), (6.12)

which asserts that either A is the only block or B is the only block.

Example 3. Consider the following algebraic axioms for natural numbers,
i.e., non-negative integers, appropriate when we aren’t supposing that natural
numbers are the only objects.

isnatnum 0 ∧ ∀x.(isnatnum x ⊃ isnatnum succ x). (6.13)

Circumscribing isnatnum in (6.36) yields

Φ(0)∧∀x.(Φ(x) ⊃ Φ(succ x))∧∀x.(Φ(x) ⊃ isnatnum x) ⊃ ∀x.(isnatnum x ⊃ Φ(x)).(6.14)

(6.37) asserts that the only natural numbers are those objects that (6.36)
forces to be natural numbers, and this is essentially the usual axiom schema
of induction. We can get closer to the usual schema by substituting Φ(x) ≡
Ψ(x) ∧ isnatnum x. This and (6.36) make the second conjunct drop out
giving

Ψ(0) ∧ ∀x.(Ψ(x) ⊃ Ψ(succ x)) ⊃ ∀x.(isnatnum x ⊃ Ψ(x)). (6.15)

Example 4. Returning to the blocks world, suppose we have a predicate
on(x, y, s) asserting that block x is on block y in situation s. Suppose we have
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another predicate above(x, y, s) which asserts that block x is above block y
in situation s. We may write

∀xys.(on(x, y, s) ⊃ above(x, y, s)) (6.16)

and

∀xyzs.(above(x, y, s) ∧ above(y, z, s) ⊃ above(x, z, s)), (6.17)

i.e. above is a transitive relation. Circumscribing above in (6.38)∧(6.39) gives

∀xys.(on(x, y, s) ⊃ Φ(x, y, s))
∧∀xyzs.(Φ(x, y, s) ∧ Φ(y, z, s) ⊃ Φ(x, z, s))
∧∀xys.(Φ(x, y, s) ⊃ above(x, y, s))
⊃ ∀xys.(above(x, y, s) ⊃ Φ(x, y, s))

(6.18)

which tells us that above is the transitive closure of on.
In the preceding two examples, the schemas produced by circumscription

play the role of axiom schemas rather than being just conjectures.

6.5 DOMAIN CIRCUMSCRIPTION

The form of circumscription described in this paper generalizes an earlier ver-
sion called minimal inference. Minimal inference has a semantic counterpart
called minimal entailment, and both are discussed in (McCarthy 1977) and
more extensively in (Davis 1980). The general idea of minimal entailment
is that a sentence q is minimally entailed by an axiom A, written A |=m q,
if q is true in all minimal models of A, where one model if is considered
less than another if they agree on common elements, but the domain of the
larger many contain elements not in the domain of the smaller. We shall
call the earlier form domain circumscription to contrast it with the predicate
circumscription discussed in this paper.

The domain circumscription of the sentence A is the sentence

Axiom(Φ) ∧ AΦ ⊃ ∀x.Φ(x), (6.19)

where AΦ is the relativization of A with respect to Φ and is formed by
replacing each universal quantifier ∀x. in A by ∀x.Φ(x) ⊃ and each existential
quantifier ∃x. by ∃x.Φ(x)∧. Axiom(Φ) is the conjunction of sentences Φ(a)
for each constant a and sentences ∀x.(Φ(x) ⊃ Φ(f(x))) for each function
symbol f and the corresponding sentences for functions of higher arities.



6.6. THE MODEL THEORY OF PREDICATE CIRCUMSCRIPTION 85

Domain circumscription can be reduced to predicate circumscription by
relativizing A with respect to a new one place predicate called (say) all, then
circumscribing all in Aall ∧ Axiom(all), thus getting

Axiom(Φ) ∧ AΦ ∧ ∀x.(Φ(x) ⊃ all(x)) ⊃ ∀x.(all(x) ⊃ Φ(x)). (6.20)

Now we justify our using the name all by adding the axiom ∀x.all(x) so that
(6.67) then simplifies precisely to (6.66).

In the case of the natural numbers, the domain circumscription of true,
the identically true sentence, again leads to the axiom schema of induction.
Here Axiom does all the work, because it asserts that 0 is in the domain and
that the domain is closed under the successor operation.

6.6 THE MODEL THEORY OF PREDICATE

CIRCUMSCRIPTION

This treatment is similar to Davis’s (1980) treatment of domain circumscrip-
tion. Pat Hayes (1979) pointed out that the same ideas would work.

The intuitive idea of circumscription is saying that a tuple x̄ satisfies the
predicate P only if it has to. It has to satisfy P if this follows from the
sentence A. The model-theoretic counterpart of circumscription is minimal
entailment. A sentence q is minimally entailed by A, if q is true in all minimal
models of A, where a model is minimal if as few as possible tuples x̄ satisfy
the predicate P. More formally, this works out as follows.

Definition. Let M(A) and N(A) be models of the sentence A. We say that
M is a submodel of N in P, writing M ≤P N , if M and N have the same
domain, all other predicate symbols in A besides P have the same extensions
in M and N , but the extension of P in M is included in its extension in N .

Definition. A model M of A is called minimal in P if M ′ ≤P M only if
M ′ = M . As discussed by Davis (1980), minimal models don’t always exist.

Definition. We say that A minimally entails q with respect to P , written
A |=p q provided q is true in all models of A that are minimal in P .

Theorem. Any instance of the circumscription of P in A is true in all
models of A minimal in P , i.e. is minimally entailed by A in P .
Proof. Let M be a model of A minimal in P . Let P ′ be a predicate satisfying
the left side of (6.33) when substituted for Φ. By the second conjunct of the
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left side P is an extension of P ′. If the right side of (6.33) were not satisfied,
P would be a proper extension of P ′. In that case, we could get a proper
submodel M ′ of M by letting M ′ agree with M on all predicates except P
and agree with P ′ on P . This would contradict the assumed minimality of
M .

Corollary. If A `P q, then A |=P q.
While we have discussed minimal entailment in a single predicate P , the

relation <P,Q, models minimal in P and Q, and |=P,Q have corresponding
properties and a corresponding relation to the syntactic notion `P,Q men-
tioned earlier.

6.7 MORE ON BLOCKS

The axiom

∀xys.(∀z.¬prevents(z,move(x, y), s) ⊃ on(x, y, result(move(x, y), s)))(6.21)

states that unless something prevents it, x is on y in the situation that results
from the action move(x, y).

We now list various “things” that may prevent this action.

∀xys.(¬isblock x∨¬isblock y ⊃ prevents(NONBLOCK,move(x, y), s))(6.22)

∀xys.(¬clear(x, s)∨¬clear(y, s) ⊃ prevents(COV ERED,move(x, y), s))(6.23)

∀xys.(tooheavyx ⊃ prevents(weightx,move(x, y), s)). (6.24)

Let us now suppose that a heuristic program would like to move block A
onto block C in a situation s0. The program should conjecture from (6.57)
that the action move(A,C) would have the desired effect, so it must try to es-
tablish ∀z.¬prevents(z,move(A,C), s0). The predicate λz.prevents(z,move(A,C), s0)
can be circumscribed in the conjunction of the sentences resulting from spe-
cializing (6.58), (6.59) and (6.60), and this gives

(¬isblock A ∨ ¬isblock C ⊃ Φ(NONBLOCK))
∧(¬clear(A, s0) ∨ ¬clear(C, s0) ⊃ Φ(COV ERED))
∧(tooheavyA ⊃ Φ(weightA))
∧∀z.(Φ(z) ⊃ prevents(z,move(A,C), s0))
⊃ ∀z.(prevents(z,move(A,C), s0) ⊃ Φ(z))

(6.25)
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which says that the only things that can prevent the move are the phenomena
described in (6.58), (6.59) and (6.60). Whether (6.25) is true depends on
how good the program was in finding all the relevant statements. Since
the program wants to show that nothing prevents the move, it must set
∀z.(Φ(z) ≡ false), after which (6.25) simplifies to

(isblock A ∧ isblock B ∧ clear(A, s0) ∧ clear(B, s0) ∧ ¬tooheavyA

⊃ ∀z.¬prevents(z,move(A,C), s0).
(6.26)

We suppose that the premisses of this implication are to be obtained as
follows:

1. isblock A and isblock B are explicitly asserted.

2. Suppose that the only onness assertion explicitly given for situation
s0 is on(A,B, s0). Circumscription of λx y.on(x,y,s0) in this assertion gives

Φ(A,B)∧∀xy.(Φ(x, y) ⊃ on(x, y, s0)) ⊃ ∀xy.(on(x, y, s0) ⊃ Φ(x, y)),(6.27)

and taking Φ(x, y) ≡ x = A ∧ y = B yields

∀xy.(on(x, y, s0) ⊃ x = A ∧ y = B). (6.28)

Using

∀xs.(clear(x, s) ≡ ∀y.¬on(y, x, s)) (6.29)

as the definition of clear yields the second two desired premisses.

3. ¬tooheavy(x) might be explicitly present or it might also be conjec-
tured by a circumscription assuming that if x were too heavy, the facts would
establish it.

Circumscription may also be convenient for asserting that when a block
is moved, everything that cannot be proved to move stays where it was. In
the simple blocks world, the effect of this can easily be achieved by an axiom
that states that all blocks except the one that is moved stay put. However, if
there are various sentences that say (for example) that one block is attached
to another, circumscription may express the heuristic situation better than
an axiom.
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6.8 REMARKS AND ACKNOWLEDGEMENTS

1. Circumscription is not a “nonmonotonic logic”. It is a form of nonmono-
tonic reasoning augmenting ordinary first order logic. Of course, sentence
schemata are not properly handled by most present general purpose resolu-
tion theorem provers. Even fixed schemata of mathematical induction when
used for proving programs correct usually require human intervention or spe-
cial heuristics, while here the program would have to use new schemata pro-
duced by circumscription. In (McCarthy 1979b) we treat some modalities in
first order logic instead of in modal logic. In our opinion, it is better to avoid
modifying the logic if at all possible, because there are many temptations to
modify the logic, and it would be very difficult to keep them compatible.

2. The default case reasoning provided in many systems is less general
than circumscription. Suppose, for example, that a block x is considered to
be on a block y only if this is explicitly stated, i.e. the default is that x is
not on y. Then for each individual block x, we may be able to conclude that
it isn’t on block A, but we will not be able to conclude, as circumscription
would allow, that there are no blocks on A. That would require a separate
default statement that a block is clear unless something is stated to be on it.

3. The conjunct ∀x̄.(Φ(x̄) ⊃ P (x̄)) in the premiss of (6.33) is the result
of suggestions by Ashok Chandra (1979) and Patrick Hayes (1979) whom
I thank for their help. Without it, circumscribing a disjunction, as in the
second example in Section 4, would lead to a contradiction.

4. The most direct way of using circumscription in AI is in a heuristic
reasoning program that represents much of what it believes by sentences of
logic. The program would sometimes apply circumscription to certain pred-
icates in sentences. In particular, when it wants to perform an action that
might be prevented by something, it circumscribes the prevention predicate
in a sentence A representing the information being taken into account.

Clearly the program will have to include domain dependent heuristics for
deciding what circumscriptions to make and when to take them back.

5. In circumscription it does no harm to take irrelevant facts into account.
If these facts do not contain the predicate symbol being circumscribed, they
will appear as conjuncts on the left side of the implication unchanged. There-
fore, the original versions of these facts can be used in proving the left side.

6. Circumscription can be used in other formalisms than first order logic.
Suppose for example that a set a satisfies a formula A(a) of set theory. The
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circumscription of this formula can be taken to be

∀x.(A(x) ∧ (x ⊂ a) ⊃ (a ⊂ x)). (6.30)

If a occurs in A(a) only in expressions of the form z ∈ a, then its mathemati-
cal properties should be analogous to those of predicate circumscription. We
have not explored what happens if formulas like a ∈ z occur.

7. The results of circumscription depend on the set of predicates used
to express the facts. For example, the same facts about the blocks world
can be axiomatized using the relation on or the relation above considered
in section 4 or also in terms of the heights and horizontal positions of the
blocks. Since the results of circumscription will differ according to which
representation is chosen, we see that the choice of representation has episte-
mological consequences if circumscription is admitted as a rule of conjecture.
Choosing the set of predicates in terms of which to axiomatize a set of facts,
such as those about blocks, is like choosing a co-ordinate system in physics
or geography. As discussed in (McCarthy 1979a), certain concepts are de-
finable only relative to a theory. What theory admits the most useful kinds
of circumscription may be an important criterion in the choice of predicates.
It may also be possible to make some statements about a domain like the
blocks world in a form that does not depend on the language used.

8. This investigation was supported in part by ARPA Contract MDA-
903-76-C-0206, ARPA Order No. 2494, in part by NSF Grant MCS 78-
00524, in part by the IBM 1979 Distinguished Faculty Program at the T. J.
Watson Research Center, and in part by the Center for Advanced Study in
the Behavioral Sciences.
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ADDENDUM:
CIRCUMSCRIPTION AND OTHER NONMONOTONIC FORMALISMS

Circumscription and the nonmonotonic reasoning formalisms of McDer-
mott and Doyle (1980) and Reiter (1980) differ along two dimensions. First,
circumscription is concerned with minimal models, and they are concerned
with arbitrary models. It appears that these approaches solve somewhat dif-
ferent though overlapping classes of problems, and each has its uses. The
other difference is that the reasoning of both other formalisms involves mod-
els directly, while the syntactic formulation of circumscription uses axiom
schemata. Consequently, their systems are incompletely formal unless the
metamathematics is also formalized, and this hasn’t yet been done.

However, schemata are applicable to other formalisms than circumscrip-
tion. Suppose, for example, that we have some axioms about trains and their
presence on tracks, and we wish to express the fact that if a train may be
present, it is unsafe to cross the tracks. In the McDermott-Doyle formalism,
this might be expressed

(1) M on(train, tracks) ⊃ ¬safe-to-cross(tracks),

where the properties of the predicate on are supposed expressed in a formula
that we may call Axiom(on). The M in (1) stands for “is possible”. We
propose to replace (1) and Axiom(on) by the schema

(2) Axiom(Φ) ∧ Φ(train, tracks) ⊃ ¬safe-to-cross(tracks),

where Φ is a predicate parameter that can be replaced by any predicate
expression that can be written in the language being used. If we can find
a Φ that makes the left hand side of (2) provable, then we can be sure
that Axiom(on) together with on(train, tracks) has a model assuming that
Axiom(on) is consistent. Therefore, the schema (2) is essentially a conse-
quence of the McDermott-Doyle formula (1). The converse isn’t true. A
predicate symbol may have a model without there being an explicit formula
realizing it. I believe, however, that the schema is usable in all cases where
the McDermott-Doyle or Reiter formalisms can be practically applied, and,
in particular, to all the examples in their papers.

(If one wants a counter-example to the usability of the schema, one might
look at the membership relation of set theory with the finitely axiomatized
Gödel-Bernays set theory as the axiom. Instantiating Φ in this case would
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amount to giving an internal model of set theory, and this is possible only in
a stronger theory).

It appears that such use of schemata amounts to importing part of the
model theory of a subject into the theory itself. It looks useful and even
essential for common sense reasoning, but its logical properties are not obvi-
ous.

We can also go frankly to second order logic and write

∀Φ.(Axiom(Φ) ∧ Φ(train, tracks) ⊃ ¬safe-to-cross(tracks)). (6.31)

Second order reasoning, which might be in set theory or a formalism
admitting concepts as objects rather than in second order logic, seems to
have the advantage that some of the predicate and function symbols may be
left fixed and others imitated by predicate parameters. This allows us to say
something like, “For any interpretation of P and Q satisfying the axiom A, if
there is an interpretation in which R and S satisfy the additional axiom A′,
then it is unsafe to cross the tracks”. This may be needed to express common
sense nonmonotonic reasoning, and it seems more powerful than any of the
above-mentioned nonmonotonic formalisms including circumscription.

The train example is a nonnormal default in Reiter’s sense, because we
cannot conclude that the train is on the tracks in the absence of evidence to
the contrary. Indeed, suppose that we want to wait for and catch a train at
a station across the tracks. If there might be a train coming we will take a
bridge rather than a shortcut across the tracks, but we don’t want to jump
to the conclusion that there is a train, because then we would think we were
too late and give up trying to catch it. The statement can be reformulated
as a normal default by writing

M¬safe-to-cross(tracks) ⊃ ¬safe-to-cross(tracks), (6.32)

but this is unlikely to be equivalent in all cases and the nonnormal expression
seems to express better the common sense facts.

Like normal defaults, circumscription doesn’t deal with possibility di-
rectly, and a circumscriptive treatment of the train problem would involve
circumscribing safe-to-cross(tracks) in the set of axioms. It therefore might
not be completely satisfactory.



6.10. INTRODUCTION AND NEW DEFINITION OF CIRCUMSCRIPTION93

6.10 INTRODUCTION AND NEW DEFI-

NITION OF CIRCUMSCRIPTION

(McCarthy 1980) introduces the circumscription method of nonmonotonic
reasoning and gives motivation, some mathematical properties and some ex-
amples of its application. The present paper is logically self-contained, but
motivation may be enhanced by reading the earlier paper. We don’t repeat
its arguments about the importance of nonmonotonic reasoning in AI, and
its examples are instructive.

Here we give a more symmetric definition of circumscription and appli-
cations to the formal expression of common sense facts. Our long term goal
(far from realized in the present paper) is to express these facts in a way
that would be suitable for inclusion in a general purpose database of com-
mon sense knowledge. We imagine this database to be used by AI programs
written after the initial preparation of the database. It would be best if the
writers of these programs didn’t have to be familiar with how the common
sense facts about particular phenomena are expressed. Thus common sense
knowledge must be represented in a way that is not specific to a particular
application.

It turns out that many such common sense facts can be formalized in a
uniform way. A single predicate ab, standing for “abnormal” is circumscribed
with certain other predicates and functions considered as variables that can
be constrained to achieve the circumscription subject to the axioms. This
also seems to cover the use of circumscription to represent default rules.

6.11 A NEW VERSION OF CIRCUMSCRIP-

TION

Definition. Let A(P ) be a formula of second order logic, where P is a tuple
of some of the free predicate symbols in A(P ). Let E(P, x) be a wff in which
P and a tuple x of individual variables occur free. The circumscription of
E(P, x) relative to A(P ) is the formula A′(P ) defined by

A(P )∧∀P ′.[A(P ′)∧[∀x.E(P ′, x) ⊃ E(P, x)] ⊃ [∀x.E(P ′, x) ≡ E(P, x)]].(6.33)

[We are here writing A(P ) instead of A(P1, . . . , Pn) for brevity and likewise
writing E(P, x) instead of E(P1, . . . , Pn, x1, . . . , xm)]. Likewise the quantifier
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∀x stands for ∀x1 . . . xm. A(P ) may have embedded quantifiers. Circum-
scription is a kind of minimization, and the predicate symbols in A(P ) that
are not in P itself act as parameters in this minimization. When we wish to
mention these other predicates we write A(P ; Q) and E(P ; Q, x) where Q is
a vector of predicate symbols which are not allowed to be varied.

There are two differences between this and (McCarthy 1980). First, in
that paper E(P, x) had the specific form P (x). Here we speak of circum-
scribing a wff and call the method formula circumscription, while there we
could speak of circumscribing a predicate. We still speak of circumscribing
the predicate P when E(P, x) has the special form P (x). Formula circum-
scription is more symmetric in that any of the predicate symbols in P may
be regarded as variables, and a wff is minimized; the earlier form distin-
guishes one of the predicates themselves for minimization. However, formula
circumscription is reducible to predicate circumscription provided we allow
as variables predicates besides the one being minimized.

Second, in definition (6.33) we use an explicit quantifier for the predicate
variable P ′ whereas in (McCarthy 1980), the formula was a schema. One
advantage of the present formalism is that now A′(P ) is the same kind of
formula as A(P ) and can be used as part of the axiom for circumscribing
some other wff.

In some of the literature, it has been supposed that nonmonotonic rea-
soning involves giving all predicates their minimum extension. This mistake
has led to theorems about what reasoning cannot be done that are irrelevant
to AI and database theory, because their premisses are too narrow.

6.12 A TYPOLOGY OF USES OF NONMONO-

TONIC REASONING

Before proceeding to applications of circumscription I want to suggest a ty-
pology of the uses of nonmonotonic reasoning. Each of the several papers
that introduces a mode of nonmonotonic reasoning seems to have a particular
application in mind. Perhaps we are looking at different parts of an elephant.
The orientation is towards circumscription, but I suppose the considerations
apply to other formalisms as well.

Nonmonotonic reasoning has several uses.

1. As a communication convention. Suppose A tells B about a situation
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involving a bird. If the bird cannot fly, and this is relevant, then A must say
so. Whereas if the bird can fly, there is no requirement to mention the fact.
For example, if I hire you to build me a bird cage and you don’t put a top on
it, I can get out of paying for it even if you tell the judge that I never said
my bird could fly. However, if I complain that you wasted money by putting
a top on a cage I intended for a penguin, the judge will agree with you that
if the bird couldn’t fly I should have said so.

The proposed Common Business Communication Language (CBCL) (Mc-
Carthy 1982) must include nonmonotonic conventions about what may be
inferred when a message leaves out such items as the method of delivery.

2. As a database or information storage convention. It may be a con-
vention of a particular database that certain predicates have their minimal
extension. This generalizes the closed world assumption. When a database
makes the closed world assumption for all predicates it is reasonable to imbed
this fact in the programs that use the database. However, when only some
predicates are to be minimized, we need to say which ones by appropriate
sentences of the database, perhaps as a preamble to the collection of ground
sentences that usually constitute the main content.

Neither 1 nor 2 requires that most birds can fly. Should it happen that
most birds that are subject to the communication or about which informa-
tion is requested from the data base cannot fly, the convention may lead to
inefficiency but not incorrectness.

3. As a rule of conjecture. This use was emphasized in (McCarthy 1980).
The circumscriptions may be regarded as expressions of some probabilistic
notions such as “most birds can fly” or they may be expressions of standard
cases. Thus it is simple to conjecture that there are no relevant present
material objects other than those whose presence can be inferred. It is also
a simple conjecture that a tool asserted to be present is usable for its normal
function. Such conjectures sometimes conflict, but there is nothing wrong
with having incompatible conjectures on hand. Besides the possibility of
deciding that one is correct and the other wrong, it is possible to use one for
generating possible exceptions to the other.

4. As a representation of a policy. The example is Doyle’s “The meeting
will be on Wednesday unless another decision is explicitly made”. Again
probabilities are not involved.

5. As a very streamlined expression of probabilistic information when nu-
merical probabilities, especially conditional probabilities, are unobtainable.
Since circumscription doesn’t provide numerical probabilities, its probabilis-
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tic interpretation involves probabilities that are either infinitesimal, within
an infinitesimal of one, or intermediate — without any discrimination among
the intermediate values. The circumscriptions give conditional probabilities.
Thus we may treat the probability that a bird can’t fly as an infinitesimal.
However, if the rare event occurs that the bird is a penguin, then the con-
ditional probability that it can fly is infinitesimal, but we may hear of some
rare condition that would allow it to fly after all.

Why don’t we use finite probabilities combined by the usual laws? That
would be fine if we had the numbers, but circumscription is usable when we
can’t get the numbers or find their use inconvenient. Note that the general
probability that a bird can fly may be irrelevant, because we are interested
in the facts that influence our opinion about whether a particular bird can
fly in a particular situation.

Moreover, the use of probabilities is normally considered to require the
definition of a sample space, i.e. the space of all possibilities. Circumscription
allows one to conjecture that the cases we know about are all that there
are. However, when additional cases are found, the axioms don’t have to be
changed. Thus there is no fixed space of all possibilities.

Notice also that circumscription does not provide for weighing evidence;
it is appropriate when the information permits snap decisions. However,
many cases nominally treated in terms of weighing information are in fact
cases in which the weights are such that circumscription and other defaults
work better.

6. Auto-epistemic reasoning. “If I had an elder brother, I’d know it”. This
has been studied by R. Moore. Perhaps it can be handled by circumscription.

7. Both common sense physics and common sense psychology use non-
monotonic rules. An object will continue in a straight line if nothing inter-
feres with it. A person will eat when hungry unless something prevents it.
Such rules are open ended about what might prevent the expected behavior,
and this is required, because we are always encountering unexpected phe-
nomena that modify the operation of our rules. Science, as distinct from
common sense, tries to work with exceptionless rules. However, this means
that common sense reasoning has to decide when a scientific model is appli-
cable, i.e. that there are no important phenomena not taken into account by
the theories being used and the model of the particular phenomena.

Seven different uses for nonmonotonic reasoning seem too many, so per-
haps we can condense later.
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6.13 MINIMIZING ABNORMALITY

Many people have proposed representing facts about what is “normally” the
case. One problem is that every object is abnormal in some way, and we
want to allow some aspects of the object to be abnormal and still assume
the normality of the rest. We do this with a predicate ab standing for “ab-
normal”. We circumscribe ab z. The argument of ab will be some aspect of
the entities involved. Some aspects can be abnormal without affecting oth-
ers. The aspects themselves are abstract entities, and their unintuitiveness
is somewhat a blemish on the theory.

The idea is illustrated by the examples of the following sections.

6.14 WHETHER BIRDS CAN FLY

Marvin Minsky challenged us advocates of formal systems based on math-
ematical logic to express the facts and nonmonotonic reasoning concerning
the ability of birds to fly.

There are many ways of nonmonotonically axiomatizing the facts about
which birds can fly. The following axioms using ab seem to me quite straight-
forward.

∀x.¬ab aspect1 x ⊃ ¬flies x. (6.34)

Unless an object is abnormal in aspect1, it can’t fly. (We’re using a con-
vention that parentheses may be omitted for functions and predicates of one
argument, so that (6.34) is the same as ∀x.(¬ab(aspect1(x)) ⊃ ¬flies(x)).)

It wouldn’t work to write ab x instead of ab aspect1 x, because we don’t
want a bird that is abnormal with respect to its ability to fly to be automat-
ically abnormal in other respects. Using aspects limits the effects of proofs
of abnormality.

∀x.bird x ⊃ ab aspect1 x. (6.35)

∀x.bird x ∧ ¬ab aspect2 x ⊃ flies x. (6.36)

Unless a bird is abnormal in aspect2, it can fly.
A bird is abnormal in aspect1, so (6.34) can’t be used to show it can’t fly.

If (6.35) were omitted, when we did the circumscription we would only be
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able to infer a disjunction. Either a bird is abnormal in aspect1 or it can fly
unless it is abnormal in aspect2. (6.35) expresses our preference for inferring
that a bird is abnormal in aspect1 rather than aspect2. We call (6.35) a
cancellation of inheritance axiom.

∀x.ostrich x ⊃ ab aspect2 x. (6.37)

Ostriches are abnormal in aspect2. This doesn’t say that an ostrich cannot
fly — merely that (6.36) can’t be used to infer that it does. (6.37) is another
cancellation of inheritance axiom.

∀x.penguin x ⊃ ab aspect2 x. (6.38)

Penguins are also abnormal in aspect2.

∀x.ostrich x ∧ ¬ab aspect3 x ⊃ ¬flies x. (6.39)

∀x.penguin x ∧ ¬ab aspect4 x ⊃ ¬flies x. (6.40)

Normally ostriches and penguins can’t fly. However, there is an out. (6.39)
and (6.40) provide that under unspecified conditions, an ostrich or penguin
might fly after all. If we give no such conditions, we will conclude that an
ostrich or penguin can’t fly. Additional objects that can fly may be specified.
Each needs two axioms. The first says that it is abnormal in aspect1 and
prevents (6.34) from being used to say that it can’t fly. The second provides
that it can fly unless it is abnormal in yet another way. Additional non-flying
birds can also be provided for at a cost of two axioms per kind.

We haven’t yet said that ostriches and penguins are birds, so let’s do that
and throw in that canaries are birds also.

∀x.ostrich x ⊃ bird x. (6.41)

∀x.penguin x ⊃ bird x. (6.42)

∀x.canary x ⊃ bird x. (6.43)

Asserting that ostriches, penguins and canaries are birds will help inherit
other properties from the class of birds. For example, we have

∀x.bird x ∧ ¬ab aspect5 x ⊃ feathered x. (6.44)
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So far there is nothing to prevent ostriches, penguins and canaries from
overlapping. We could write disjointness axioms like

∀x.¬ostrich x ∨ ¬penguin x, (6.45)

but we require n2 of them if we have n species. It is more efficient to write
axioms like

∀x.ostrich x ⊃ species x = ′ostrich, (6.46)

which makes the n species disjoint with only n axioms assuming that the
distinctness of the names is apparent to the reasoner. This problem is like
the unique names problem.

If these are the only facts to be taken into account, we must somehow
specify that what can fly is to be determined by circumscribing the wff ab z
using ab and flies as variables. Why exactly these? If ab were not taken
as variable, ab z couldn’t vary either, and the minimization problem would
go away. Since the purpose of the axiom set is to describe what flies, the
predicate flies must be varied also. Suppose we contemplate taking bird as
variable also. In the first place, this violates an intuition that deciding what
flies follows deciding what is a bird in the common sense situations we want
to cover. Secondly, if we use exactly the above axioms and admit bird as a
variable, we will further conclude that the only birds are penguins, canaries
and ostriches. Namely, for these entities something has to be abnormal,
and therefore minimizing ab z will involve making as few entities as possible
penguins, canaries and ostriches. If we also admit penguin, ostrich, and
canary as variable, we will succeed in making ab z always false, and there
will be no birds at all.

However, if the same circumscriptions are done with additional axioms
like canary Tweety and ostrich Joe, we will get the expected result that
Tweety can fly and Joe cannot even if all the above are variable.

While this works it may be more straightforward, and therefore less likely
to lead to subsequent trouble, to circumscribe birds, ostriches and penguins
with axioms like

∀x.¬ab aspect6 x ⊃ ¬bird x, (6.47)

We have not yet specified how a program will know what to circumscribe.
One extreme is to build it into the program, but this is contrary to the
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declarative spirit. However, a statement of what to circumscribe isn’t just
a sentence of the language because of its nonmonotonic character. Another
possibility is to include some sort of metamathematical statement like

circumscribe(ab z ; ab, flies, bird, ostrich, penguin) (6.48)

in a “policy” database available to the program. (6.48) is intended to mean
that ab z is to be circumscribed with ab, flies, bird, ostrich and penguin
taken as variable. Explicitly listing the variables makes adding new kinds
awkward, since they will have to be mentioned in the circumscribe statement.
Section 11 on simple abnormality theories presents yet another possibility.

6.15 THE UNIQUE NAMES HYPOTHESIS

Raymond Reiter (1980b) introduced the phrase “unique names hypothesis”
for the assumption that each object has a unique name, i.e. that distinct
names denote distinct objects. We want to treat this nonmonotonically.
Namely, we want a wff that picks out those models of our initial assumptions
that maximize the inequality of the denotations of constant symbols. While
we’re at it, we might as well try for something stronger. We want to maximize
the extent to which distinct terms designate distinct objects. When there
is a unique model of the axioms that maximizes distinctness, we can put it
more simply; two terms denote distinct objects unless the axioms force them
to denote the same. If we are even more fortunate, as we are in the examples
to be given, we can say that two terms denote distinct objects unless their
equality is provable.

We don’t know a completely satisfactory way of doing this. Suppose
that we have a language L and a theory T consisting of the consequences
of a formula A. It would be most pleasant if we could just circumscribe
equality, but as Etherington, Mercer and Reiter (1985) point out, this doesn’t
work, and nothing similar works. We could hope to circumscribe some other
formula of L, but this doesn’t seem to work either. Failing that, we could
hope for some other second order formula taken from L that would express
the unique names hypothesis, but we don’t presently see how to do it.

Our solution involves extending the language by introducing the names
themselves as the only objects. All assertions about objects are expressed as
assertions about the names.
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We suppose our theory is such that the names themselves are all provably
distinct. There are several ways of doing this. Let the names be n1, n2, etc.
The simplest solution is to have an axiom ni 6= nj for each pair of distinct
names. This requires a number of axioms proportional to the square of
the number of names, which is sometimes objectionable. The next solution
involves introducing an arbitrary ordering on the names. We have special
axioms n1 < n2, n2 < n3, n3 < n4, etc. and the general axioms ∀xy.x < y ⊃
x 6= y and ∀xyz.x < y ∧ y < z ⊃ x < z. This makes the number of axioms
proportional to the number of names. A third possibility involves mapping
the names onto integers with axioms like index n1 = 1, index n2 = 2, etc. and
using a theory of the integers that provides for their distinctness. The fourth
possibility involves using string constants for the names and “attaching” to
equality in the language a subroutine that computes whether two strings are
equal. If our names were quoted symbols as in LISP, this amounts to having
′a 6= ′b and all its countable infinity of analogs as axioms. Each of these
devices is useful in appropriate circumstances.

From the point of view of mathematical logic, there is no harm in having
an infinity of such axioms. From the computational point of view of a theorem
proving or problem solving program, we merely suppose that we rely on the
computer to generate the assertion that two names are distinct whenever
this is required, since a subroutine can easily tell whether two strings are the
same.

Besides axiomatizing the distinctness of the constants, we also want to
axiomatize the distinctness of terms. This may be accomplished by providing
for each function two axioms. Letting foo be a function of two arguments
we postulate

∀x1x2y1y2.foo(x1, y1) = foo(x2, y2) ⊃ x1 = x2 ∧ y1 = y2 (6.49)

and

∀xy.fnamefoo(x, y) = ′foo. (6.50)

The first axiom ensures that unless the arguments of foo are identical, its
values are distinct. The second ensures that the values of foo are distinct
from the values of any other function or any constant, assuming that we
refrain from naming any constant ′foo.

These axioms amount to making our domain isomorphic to an extension
of the Herbrand universe of the language.
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Now that the names are guaranteed distinct, what about the objects
they denote? We introduce a predicate e(x, y) and axiomatize it to be an
equivalence relation. Its intended interpretation is that the names x and y
denote the same object. We then formulate all our usual axioms in terms
of names rather than in terms of objects. Thus on(n1, n2) means that the
object named by n1 is on the object named by n2, and bird x means that the
name x denotes a bird. We add axioms of substitutivity for e with regard to
those predicates and functions that are translates of predicates referring to
objects rather than predicates on the names themselves. Thus for a predicate
on and a function foo we may have axioms

∀n1n2n
′

1
n′

2
.e(n1, n

′

1
) ∧ e(n2, n

′

2
) ⊃ (on(n1, n2) ≡ on(n′

1
, n′

2
)) (6.51)

and

∀x1x2y1y2.e(x1, x2) ∧ e(y1, y2) ⊃ e(foo(x1, y1), foo(x2, y2)). (6.52)

If for some class C of names, we wish to assert the unique names hypoth-
esis, we simply use an axiom like

∀n1n2.n1 ∈ C ∧ n2 ∈ C ⊃ (e(n1, n2) ≡ n1 = n2). (6.53)

However, we often want only to assume that distinct names denote dis-
tinct objects when this doesn’t contradict our other assumptions. In general,
our axioms won’t permit making all names distinct simultaneously, and there
will be several models with maximally distinct objects. The simplest example
is obtained by circumscribing e(x, y) while adhering to the axiom

e(n1, n2) ∨ e(n1, n3)

where n1, n2, and n3 are distinct names. There will then be two models, one
satisfying e(n1, n2)∧¬e(n1, n3) and the other satisfying ¬e(n1, n2)∧e(n1, n3).

Thus circumscribing e(x, y) maximizes uniqueness of names. If we only
want unique names for some class C of names, then we circumscribe the
formula

x ∈ C ∧ y ∈ C ⊃ e(x, y). (6.54)

An example of such a circumscription is given in Appendix B. However, there
seems to be a price. Part of the price is admitting names as objects. Another
part is admitting the predicate e(x, y) which is substitutive for predicates and
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functions of names that really are about the objects denoted by the names.
e(x, y) is not to be taken as substitutive for predicates on names that aren’t
about the objects. Of these our only present example is equality. Thus we
don’t have

∀n1n2n
′

1
n′

2
.e(n1, n

′

1
) ∧ e(n2, n

′

2
) ⊃ (n1 = n2 ≡ n′

1
= n′

2
).

The awkward part of the price is that we must refrain from any functions
whose values are the objects themselves rather than names. They would spoil
the circumscription by not allowing us to infer the distinctness of the objects
denoted by distinct names. Actually, we can allow them provided we don’t
include the axioms involving them in the circumscription. Unfortunately,
this spoils the other property of circumscription that lets us take any facts
into account.

The examples of the use of circumscription in AI in the rest of the paper
don’t interpret the variables as merely ranging over names. Therefore, they
are incompatible with getting unique names by circumscription as described
in this section. Presumably it wouldn’t be very difficult to revise those axioms
for compatibility with the present approach to unique names.

6.16 TWO EXAMPLES OF RAYMOND RE-

ITER

Reiter asks about representing, “Quakers are normally pacifists and Republi-
cans are normally non-pacifists. How about Nixon, who is both a Quaker and
a Republican?” Systems of nonmonotonic reasoning that use non-provability
as a basis for inferring negation will infer that Nixon is neither a pacifist nor
a non-pacifist. Combining these conclusions with the original premiss leads
to a contradiction. We use

∀x.quaker x ∧ ¬ab aspect1 x ⊃ pacifist x, (6.55)

∀x.republican x ∧ ¬ab aspect2 x ⊃ ¬pacifist x (6.56)

and

quaker Nixon ∧ republican Nixon. (6.57)
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When we circumscribe ab z using these three sentences as A(ab, pacifist),
we will only be able to conclude that Nixon is either abnormal in aspect1 or
in aspect2, and we will not be able to say whether he is a pacifist. Of course,
this is the same conclusion as would be reached without circumscription. The
point is merely that we avoid contradiction.

Reiter’s second example is that a person normally lives in the same city as
his wife and in the same city as his employer. But A’s wife lives in Vancouver
and A’s employer is in Toronto. We write

∀x.¬ab aspect1 x ⊃ city x = city wife x (6.58)

and

∀x.¬ab aspect2 x ⊃ city x = city employer x. (6.59)

If we have

city wife A = V ancouver∧city employer A = Toronto∧Toronto 6= V ancouver,(6.60)

we will again only be able to conclude that A lives either in Toronto or Van-
couver. In this circumscription, the function city must be taken as variable.
This might be considered not entirely satisfactory. If one knows that a per-
son either doesn’t live in the same city as his wife or doesn’t live in the same
city as his employer, then there is an increased probability that he doesn’t
live in the same city as either. A system that did reasoning of this kind
would seem to require a larger body of facts and perhaps more explicitly
metamathematical reasoning. Not knowing how to do that, we might want
to use aspect1 x in both (6.58) and (6.59). Then we would conclude nothing
about his city once we knew that he wasn’t in the same city as both.

6.17 A MORE GENERAL TREATMENT OF

AN IS-A HIERARCHY

The bird example works fine when a fixed is-a hierarchy is in question. How-
ever, our writing the inheritance cancellation axioms depended on knowing
exactly from what higher level the properties were inherited. This doesn’t
correspond to my intuition of how we humans represent inheritance. It would
seem rather that when we say that birds can fly, we don’t necessarily have
in mind that an inheritance of inability to fly from things in general is being
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cancelled. We can formulate inheritance of properties in a more general way
provided we reify the properties. Presumably there are many ways of doing
this, but here’s one that seems to work.

The first order variables of our theory range over classes of objects (de-
noted by c with numerical suffixes), properties (denoted by p) and objects
(denoted by x). We don’t identify our classes with sets (or with the classes
of Gödel-Bernays set theory). In particular, we don’t assume extensionality.
We have several predicates:

ordinarily(c, p) means that objects of class c ordinarily have property p.
c1 ≤ c2 means that class c1 ordinarily inherits from class c2. We assume
that this relation is transitive. in(x, c) means that the object x is in class c.
ap(p, x) means that property p applies to object x. Our axioms are

∀c1c2c3.c1 ≤ c2 ∧ c2 ≤ c3 ⊃ c1 ≤ c3, (6.61)

∀c1c2p.ordinarily(c2, p)∧c1 ≤ c2∧¬ab aspect1(c1, c2, p) ⊃ ordinarily(c1, p),(6.62)

∀c1c2c3p.c1 ≤ c2∧c2 ≤ c3∧ordinarily(c2, not p) ⊃ ab aspect1(c1, c3, p),(6.63)

∀xcp.in(x, c) ∧ ordinarily(c, p) ∧ ¬ab aspect2(x, c, p) ⊃ ap(p, x), (6.64)

∀xc1c2p.in(x, c1)∧c1 ≤ c2∧ordinarily(c1, not p) ⊃ ab aspect2(x, c2, p).(6.65)

Axiom (6.61) is the afore-mentioned transitivity of ≤. (6.62) says that prop-
erties that ordinarily hold for a class are inherited unless something is ab-
normal. (6.63) cancels the inheritance if there is an intermediate class for
which the property ordinarily doesn’t hold. (6.64) says that properties which
ordinarily hold actually hold for elements of the class unless something is ab-
normal. (6.65) cancels the effect of (6.64) when there is an intermediate
class for which the negation of the property ordinarily holds. Notice that
this reification of properties seems to require imitation boolean operators.
Such operators are discussed in (McCarthy 1979).
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6.18 THE BLOCKS WORLD

The following set of “situation calculus” axioms solves the frame problem for
a blocks world in which blocks can be moved and painted. Here result(e, s)
denotes the situation that results when event e occurs in situation s. The
formalism is approximately that of (McCarthy and Hayes 1969).

∀xes.¬ab aspect1(x, e, s) ⊃ location(x, result(e, s)) = location(x, s).(6.66)

∀xes.¬ab aspect2(x, e, s) ⊃ color(x, result(e, s)) = color(x, s). (6.67)

Objects change their locations and colors only for a reason.

∀xls.ab aspect1(x,move(x, l), s) (6.68)

and

∀xls.¬ab aspect3(x, l, s) ⊃ location(x, result(move(x, l), s)) = l. (6.69)

∀xcs.ab aspect2(x, paint(x, c), s) (6.70)

and

∀xcs.¬ab aspect4(x, c, s) ⊃ color(x, result(paint(x, c), s)) = c. (6.71)

Objects change their locations when moved and their colors when painted.

∀xls.¬clear(topx, s) ∨ ¬clear(l, s) ∨ tooheavy x ∨ l = top x (6.72)

⊃ ab aspect3(x, l, s). (6.73)

This prevents the rule (6.68) from being used to infer that an object will
move if its top isn’t clear or to a destination that isn’t clear or if the object
is too heavy. An object also cannot be moved to its own top.

∀ls.clear(l, s) ≡ ¬∃x.(¬trivial x ∧ location(x, s) = l). (6.74)

A location is clear if all the objects there are trivial, e.g. a speck of dust.

∀x.¬ab aspect5 x ⊃ ¬trivial x. (6.75)

Trivial objects are abnormal in aspect5.
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6.19 AN EXAMPLE OF DOING THE CIR-

CUMSCRIPTION

In order to keep the example short we will take into account only the following
facts from the earlier section on flying.

∀x.¬ab aspect1 x ⊃ ¬flies x. (6.2)

∀x.bird x ⊃ ab aspect1 x. (6.3)

∀x.bird x ∧ ¬ab aspect2 x ⊃ flies x. (6.4)

∀x.ostrich x ⊃ ab aspect2 x. (6.5)

∀x.ostrich x ∧ ¬ab aspect3 x ⊃ ¬flies x. (6.7)

Their conjunction is taken as A(ab, flies). This means that what entities
satisfy ab and what entities satisfy flies are to be chosen so as to minimize
ab z. Which objects are birds and ostriches are parameters rather than
variables, i.e. what objects are birds is considered given.

We also need an axiom that asserts that the aspects are different. Here
is a straightforward version that would be rather long were there more than
three aspects.

(∀xy.¬(aspect1 x = aspect2 y))
∧(∀xy.¬(aspect1 x = aspect3 y))
∧(∀xy.¬(aspect2 x = aspect3 y))

∧(∀xy.aspect1 x = aspect1 y ≡ x = y)
∧(∀xy.aspect2 x = aspect2 y ≡ x = y)
∧(∀xy.aspect3 x = aspect3 y ≡ x = y).

We could include this axiom in A(ab, flies), but as we shall see, it won’t
matter whether we do, because it contains neither ab nor flies. The circum-
scription formula A′(ab, flies) is then

A(ab, flies)∧∀ab′flies′.[A(ab′, f lies′)∧[∀x.ab′ x ⊃ ab x] ⊃ [∀x.ab x ≡ ab′ x]],(6.41)
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which spelled out becomes

[∀x.¬ab aspect1 x ⊃ ¬flies x]
∧[∀x.bird x ⊃ ab aspect1 x]
∧[∀x.bird x ∧ ¬ab aspect2 x ⊃ flies x]
∧[∀x.ostrich x ⊃ ab aspect2 x]
∧[∀x.ostrich x ∧ ¬ab aspect3 x ⊃ ¬flies x]
∧∀ab′ flies′. [[∀x.¬ab′ aspect1 x ⊃ ¬flies′ x]

∧[∀x.bird x ⊃ ab′ aspect1 x]
∧[∀x.bird x ∧ ¬ab′ aspect2 x ⊃ flies′ x]
∧[∀x.ostrich x ⊃ ab′ aspect2 x]
∧[∀x.ostrich x ∧ ¬ab′ aspect3 x ⊃ ¬flies′ x]
∧[∀z.ab′ z ⊃ ab z]

⊃ [∀z.ab z ≡ ab′ z]].

(6.42)

A(ab, flies) is guaranteed to be true, because it is part of what is assumed
in our common sense database. Therefore (6.42) reduces to

∀ab′flies′.[[∀x.¬ab′ aspect1 x ⊃ ¬flies′ x]
∧[∀x.bird x ⊃ ab′ aspect1 x]
∧[∀x.bird x ∧ ¬ab′ aspect2 x ⊃ flies′ x]
∧[∀x.ostrich x ⊃ ab′ aspect2 x]
∧[∀x.ostrich x ∧ ¬ab′ aspect3 x ⊃ ¬flies′ x]
∧[∀z.ab′ z ⊃ ab z]
⊃ [∀z.ab z ≡ ab′ z]].

(6.43)

Our objective is now to make suitable substitutions for ab′ and flies′

so that all the terms preceding the ⊃ in (6.43) will be true, and the right
side will determine ab. The axiom A(ab, flies) will then determine flies,
i.e. we will know what the fliers are. flies′ is easy, because we need only
apply wishful thinking; we want the fliers to be just those birds that aren’t
ostriches. Therefore, we put

flies′ x ≡ bird x ∧ ¬ostrich x. (6.44)

ab′ isn’t really much more difficult, but there is a notational problem. We
define

ab′ z ≡ [∃x.bird x∧z = aspect1 x]∨[∃x.ostrich x∧z = aspect2 x],(6.45)

which covers the cases we want to be abnormal.
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Appendix A contains a complete proof as accepted by Jussi Ketonen’s
(1984) interactive theorem prover EKL. EKL uses the theory of types and
therefore has no problem with the second order logic required by circum-
scription.

6.20 SIMPLE ABNORMALITY THEORIES

The examples in this paper all circumscribe the predicate ab. However, they
differ in what they take as variable in the circumscription. The declara-
tive expression of common sense requires that we be definite about what
is circumscribed and what is variable in the circumscription. We have the
following objectives.

1. The general facts of common sense are described by a collection of
sentences that are not oriented in advance to particular problems.

2. It is prescribed how to express the facts of particular situations includ-
ing the goals to be achieved.

3. The general system prescribes what is to be circumscribed and what
is variable.

4. Once the facts to be taken into account are chosen, the circumscription
process proceeds in a definite way resulting in a definite theory — in general
second order.

5. The conclusions reached taking a given set of facts into account are
intuitively reasonable.

These objectives are the same as those of (McCarthy 1959) except that
that paper used only monotonic reasoning.

The examples of this paper suggest defining a simple abnormality formal-
ism used as follows.

1. The general facts include ab and a variety of aspects.
2. The specific facts do not involve ab.
3. The circumscription of ab is done with all predicates variable. This

means that the axioms must be sufficient to tie them down.
I had hoped that the simple abnormality formalism would be adequate

to express common sense knowledge. Unfortunately, this seems not to be the
case. Consider the following axioms.

¬ab aspect1 x ⊃ ¬flies x,

bird x ⊃ ab aspect1 x,
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bird x ∧ ¬ab aspect2 x ⊃ flies x,

canary x ∧ ¬ab aspect3 x ⊃ bird x,

canary Tweety.

We ask whether Tweety flies. Simply circumscribing ab leaves this undecided,
because Tweety can either be abnormal in aspect1 or in aspect3. Common
sense tells us that we should conclude that Tweety flies. This can be achieved
by preferring to have Tweety abnormal in aspect1 to having Tweety abnor-
mal in aspect3. It is not yet clear whether this can be done using the simple
circumscriptive formalism. Our approach to solving this problem is discussed
in the following section on prioritized circumscription. However, simple ab-
normality theories may be adequate for an interesting set of common sense
axiomatizations.

6.21 PRIORITIZED CIRCUMSCRIPTION

An alternate way of introducing formula circumscription is by means of an
ordering on tuples of predicates satisfying an axiom. We define P ≤ P ′ by

∀PP ′.P ≤ P ′ ≡ ∀x.E(P, x) ⊃ E(P ′, x). (6.46)

That P0 is a relative minimum in this ordering is expressed by

∀P.P ≤ P0 ⊃ P = P0, (6.47)

where equality is interpreted extensionally, i.e. we have

∀PP ′.P = P ′ ≡ (∀x.E(P, x) ≡ E(P ′, x)). (6.48)

Assuming that we look for a minimum among predicates P satisfying
A(P ), (6.46) expands to precisely to the circumscription formula (6.33). In
some earlier expositions of circumscription this ordering approach was used,
and Vladimir Lifschitz in a recent seminar advocated returning to it as a
more fundamental and understandable concept.

I’m beginning to think he’s right about it being more understandable, and
there seems to be a more fundamental reason for using it. Namely, certain
common sense axiomatizations are easier to formalize if we use a new kind
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of ordering, and circumscription based on this kind of ordering doesn’t seem
to reduce to ordinary formula circumscription.

We call it prioritized circumscription.
Suppose we write some bird axioms in the form

∀x.¬ab aspect1 x ⊃ ¬flies x (6.49)

and

∀x.bird x ∧ ¬ab aspect2 x ⊃ ab aspect1 x. (6.50)

The intent is clear. The goal is that being a bird and not abnormal in
aspect2 prevents the application of (6.49). However, circumscribing ab z with
the conjunction of (6.49) and (6.50) as A(ab) doesn’t have this effect, because
(6.50) is equivalent to

∀x.bird x ⊃ ab aspect1 x ∨ ab aspect2 x, (6.51)

and there is no indication that one would prefer to have aspect1 x abnor-
mal rather than to have aspect2 x abnormal. Circumscription then results
in a disjunction which is not wanted in this case. The need to avoid this
disjunction is why the axioms in section 6.14 (page 97) included cancellation
of inheritance axioms.

However, by using a new kind of ordering we can leave (6.49) and (6.50)
as is, and still get the desired effect.

We define two orderings on ab predicates, namely

∀ab ab′.ab ≤1 ab′ ≡ ∀x.ab aspect1 x ⊃ ab′ aspect1 x (6.52)

and

∀ab ab′.ab ≤2 ab′ ≡ ∀x.ab aspect2 x ⊃ ab′ aspect2 x. (6.53)

We then combine these orderings lexicographically giving ≤2 priority over
≤1 getting

∀ab ab′.ab ≤1<2 ab′ ≡ ab ≤2 ab′ ∧ ab =2 ab′ ⊃ ab ≤1 ab′. (6.54)

Choosing ab0 so as to minimize this ordering yields the result that exactly
birds can fly. However, if we add

∀x.ostrich x ⊃ ab aspect2 x, (6.55)
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we’ll get that ostriches (whether or not ostriches are birds) don’t fly without
further axioms. If we use

∀x.ostrich x ∧ ¬ab aspect3 x ⊃ ab aspect2 x (6.56)

instead of (6.55), we’ll have to revise our notion of ordering to put minimizing
ab aspect3 x at higher priority than minimizing aspect2 x and a fortiori at
higher priority than minimizing aspect1.

This suggests providing a partial ordering on aspects giving their prior-
ities and providing axioms that permit deducing the ordering on ab from
the sentences that describe the ordering relations. Lifschitz (1985) further
develops the idea of prioritized circumscription.

I expect that prioritized circumscription will turn out to be the most
natural and powerful variant.

Simple abnormality theories seem to be inadequate also for the blocks
world described in section 11. I am indebted to Lifschitz for the following
example. Consider

S2 = result(move(B, top A), result(move(A, top B), S0)), (6.57)

where S0 is a situation with exactly blocks A and B on the table. Intuitively,
the second action move(B, top A) is unsuccessful, because after the first
action A is on B, and so B isn’t clear. Suppose we provide by a suitable
axiom that when the block to be moved is not clear or the destination place
is not clear, then the situation is normally unchanged. Then S2 should
be the same situation as S1 = result(move(A,B), S0). However, simple
circumscription of ab won’t give this result, because the first move is only
normally successful, and if the first move is unsuccessful for some unspecified
reason, the second move may succeed after all. Therefore, circumscription of
ab only gives a disjunction.

Clearly the priorities need to be arranged to avoid this kind of unintended
“sneak disjunction”. The best way to do it by imposing priorities isn’t clear
at the time of this writing.

6.22 GENERAL CONSIDERATIONS AND

REMARKS

1. Suppose we have a data base of facts axiomatized by a formalism involving
the predicate ab. In connection with a particular problem, a program takes a
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subcollection of these facts together with the specific facts of the problem and
then circumscribes ab z. We get a second order formula, and in general, as
the natural number example of (McCarthy 1980) shows, this formula is not
equivalent to any first order formula. However, many common sense domains
are axiomatizable in such a way that the circumscription is equivalent to a
first order formula. In this case we call the circumscription collapsible. For
example, Vladimir Lifschitz (1985) has shown that this is true if the axioms
are from a certain class he calls “separable” formulas. This can presumably
be extended to other cases in which the ranges and domains of the functions
are disjoint, so that there is no way of generating an infinity of elements.

Circumscription is also collapsible when the predicates are all monadic
and there are no functions.

2. We can then regard the process of deciding what facts to take into
account and then circumscribing as a process of compiling from a slightly
higher level nonmonotonic language into mathematical logic, especially first
order logic. We can also regard natural language as higher level than logic.
However, as I shall discuss elsewhere, natural language doesn’t have an inde-
pendent reasoning process, because most natural language inferences involve
suppressed premisses which are not represented in natural language in the
minds of the people doing the reasoning.

Reiter has pointed out, both informally and implicitly in (Reiter 1982)
that circumscription often translates directly into Prolog program once it has
been decided what facts to take into account.

3. Circumscription has interesting relations to Reiter’s (1980a) logic of
defaults. In simple cases they give the same results. However, a computer
program using default logic would have to establish the existence of mod-
els, perhaps by constructing them, in order to determine that the sentences
mentioned in default rules were consistent. Such computations are not just
selectively applying the rules of inference of logic but are metamathematical.
At present this is treated entirely informally, and I am not aware of any com-
puter program that finds models of sets of sentences or even interacts with
a user to find and verify such models.

Circumscription works entirely within logic as Appendices A and B illus-
trate. It can do this, because it uses second order logic to import some of the
model theory of first order formulas into the theory itself. Finding the right
substitution for the predicate variables is, in the cases we have examined,
the same task as finding models of a first order theory. Putting everything
into the logic itself is an advantage as long as there is neither a good theory
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of how to construct models nor programs that do it.
Notice, however, that finding an interpretation of a language has two

parts — finding a domain and interpreting the predicate and function letters
by predicates and functions on the domain. It seems that the second is
easier to import into second order logic than the first. This may be why our
treatment of unique names is awkward.

4. We are only part way to our goal of providing a formalism in which
a database of common sense knowledge can be expressed. Besides sets of
axioms involving ab, we need ways of specifying what facts shall be taken
into account and what functions and predicates are to be taken as variable.

Moreover, some of the circumscriptions have unwanted conclusions, e.g.
that there are no ostriches if none are explicitly mentioned. Perhaps some of
this can be fixed by introducing the notion of present situation. An axiom
that ostriches exist will do no harm if what is allowed to vary includes only
ostriches that are present.

5. Nonmonotonic formalisms in general, and circumscription in particu-
lar, have many as yet unrealized applications to formalizing common sense
knowledge and reasoning. Since we have to think about these matters in a
new way, what the applications are and how to realize them isn’t immediately
obvious. Here are some suggestions.

When we are searching for the “best” object of some kind, we often jump
to the conclusion that the best we have found so far is the best. This process
can be represented as circumscribing better(x, candidate), where candidate
is the best we have found so far. If we attempt this circumscription while
including certain information in our axiom A(better, P ), where P represents
additional predicates being varied, we will succeed in showing that there is
nothing better only if this is consistent with the information we take into
account. If the attempt to circumscribe fails, we would like our reasoning
program to use the failure as an aid to finding a better object. I don’t know
how hard this would be.

6.23 APPENDIX A

CIRCUMSCRIPTION IN A PROOF CHECKER

At present there are no reasoning or problem-solving programs using circum-
scription. A first step towards such a program involves determining what
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kinds of reasoning are required to use circumscription effectively. As a step
towards this we include in this and the following appendix two proofs in EKL
(Ketonen and Weening 1984), an interactive theorem prover for the theory
of types. The first does the bird problem and the second a simple unique
names problem. It will be seen that the proofs make substantial use of EKL’s
ability to admit arguments in second order logic.

Each EKL step begins with a command given by the user. This is usually
followed by the sentence resulting from the step in a group of lines each ending
in a semicolon, but this is omitted for definitions when the information is
contained in the command. We follow each step by a brief explanation. Of
course, the reader may skip this proof if he is sufficiently clear about what
steps are involved. However, I found that pushing the proof through EKL
clarified my ideas considerably as well as turning up bugs in my axioms.

1. (DEFINE A
|∀AB FLIES.A(AB,FLIES) ≡

(∀X.¬AB(ASPECT1(X)) ⊃ ¬FLIES(X))∧
(∀X.BIRD(X) ⊃ AB(ASPECT1(X)))∧
(∀X.BIRD(X) ∧ ¬AB(ASPECT2(X)) ⊃ FLIES(X))∧
(∀X.OSTRICH(X) ⊃ AB(ASPECT2(X)))∧
(∀X.OSTRICH(X) ∧ ¬AB(ASPECT3(X)) ⊃ ¬FLIES(X))|NIL)

This defines the second order predicate A(ab, flies), where ab and flies are
predicate variables. Included here are the specific facts about flying being
taken into account.

; labels : SIMPINFO
2. (AXIOM

|(∀X Y.¬ASPECT1(X) = ASPECT2(Y ))∧
(∀X Y.¬ASPECT1(X) = ASPECT3(Y ))∧
(∀X Y.¬ASPECT2(X) = ASPECT3(Y ))∧
(∀X Y.ASPECT1(X) = ASPECT1(Y ) ≡ X = Y )∧
(∀X Y.ASPECT2(X) = ASPECT2(Y ) ≡ X = Y )∧
(∀X Y.ASPECT3(X) = ASPECT3(Y ) ≡ X = Y )|)

These facts about the distinctness of aspects are used in step 20 only. Since
axiom 2 is labelled SIMPINFO, the EKL simplifier uses it as appropriate
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when it is asked to simplify a formula.

3. (DEFINE A1
|∀AB FLIES.A1(AB,FLIES) ≡

A(AB,FLIES)∧
(∀AB1 FLIES1.A(AB1, FLIES1) ∧ (∀Z.AB1(Z) ⊃ AB(Z)) ⊃
(∀Z.AB(Z) ≡ AB1(Z)))|NIL)

This is the circumscription formula itself.

4. (ASSUME |A1(AB,FLIES)|)
deps : (4)

Since EKL cannot be asked (yet) to do a circumscription, we assume the
result. Most subsequent statements list line 4 as a dependency. This is
appropriate since circumscription is a rule of conjecture rather than a rule of
inference.

5. (DEFINE FLIES2|∀X.FLIES2(X) ≡ BIRD(X) ∧ ¬OSTRICH(X)|NIL)

This definition and the next say what we are going to substitute for the
bound predicate variables.

6. (DEFINE AB2
|∀Z.AB2(Z) ≡ (∃X.BIRD(X) ∧ Z = ASPECT1(X))∨
(∃X.OSTRICH(X) ∧ Z = ASPECT2(X))|NIL)

The fact that this definition is necessarily somewhat awkward makes for some
difficulty throughout the proof.

7. (RW 4 (OPEN A1))
A(AB,FLIES) ∧ (∀AB1 FLIES1.A(AB1, FLIES1)∧
(∀Z.AB1(Z) ⊃ AB(Z)) ⊃ (∀Z.AB(Z) ≡ AB1(Z)))
deps : (4)

This step merely expands out the circumscription formula. RW stands for
“rewrite a line”, in this case line 4.

8.(TRW |A(AB,FLIES)|(USE 7))
A(AB,FLIES)
deps : (4)



6.23. APPENDIX A 117

We separate the two conjuncts of 7 in this and the next step.

9. (TRW |∀AB1 FLIES1.A(AB1, FLIES1)∧
(∀Z.AB1(Z) ⊃ AB(Z)) ⊃ (∀Z.AB(Z) ≡ AB1(Z))|
(USE 7))
∀AB1 FLIES1.A(AB1, FLIES1) ∧ (∀Z.AB1(Z) ⊃ AB(Z)) ⊃
(∀Z.AB(Z) ≡ AB1(Z))
deps : (4)

10. (RW 8 (OPEN A))
(∀X.¬AB(ASPECT1(X)) ⊃ ¬FLIES(X))∧
(∀X.BIRD(X) ⊃ AB(ASPECT1(X)))∧
(∀X.BIRD(X) ∧ ¬AB(ASPECT2(X)) ⊃ FLIES(X))∧
(∀X.OSTRICH(X) ⊃ AB(ASPECT2(X)))∧
(∀X.OSTRICH(X) ∧ ¬AB(ASPECT3(X)) ⊃ ¬FLIES(X))
deps : (4)

Expanding out the axiom using the definition a in step 1.

11. (ASSUME |AB2(Z)|)
deps : (11)

Our goal is step 15, but we need to assume its premiss and then derive its
conclusion.

12. (RW11 (OPEN AB2))
(∃X.BIRD(X) ∧ Z = ASPECT1(X))∨
(∃X.OSTRICH(X) ∧ Z = ASPECT2(X))
deps : (11)

We use the definition of ab.

13. (DERIV E |AB(Z)| (12 10) NIL)
AB(Z)
deps : (4 11)

This is our first use of EKL’s DERIVE command. It is based on the notion of
direct proof of (Ketonen and Weyhrauch 1984). Sometimes it can do rather
complicated things in one step.

14. (CI (11) 13 NIL)
AB2(Z) ⊃ AB(Z)
deps : (4)
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We discharge the assumption 11 with the “conditional introduction” com-
mand.

15. (DERIV E |∀Z.AB2(Z) ⊃ AB(Z)| (14) NIL)
∀Z.AB2(Z) ⊃ AB(Z)
deps : (4)

Universal generalization.

16. (DERIV E
|(∀X.¬AB2(ASPECT1(X)) ⊃ ¬FLIES2(X))∧
(∀X.BIRD(X) ⊃ AB2(ASPECT1(X)))∧
(∀X.BIRD(X) ∧ ¬AB2(ASPECT2(X)) ⊃ FLIES2(X))∧
(∀X.OSTRICH(X) ⊃ AB2(ASPECT2(X)))∧
(∀X.OSTRICH(X) ∧ ¬AB2(ASPECT3(X)) ⊃
¬FLIES2(X))|()(OPEN AB2 FLIES2))

; (∀X.¬AB2(ASPECT1(X)) ⊃ ¬FLIES2(X))∧
; (∀X.BIRD(X) ⊃ AB2(ASPECT1(X)))∧
; (∀X.BIRD(X) ∧ ¬AB2(ASPECT2(X)) ⊃ FLIES2(X))∧
; (∀X.OSTRICH(X) ⊃ AB2(ASPECT2(X)))∧
; (∀X.OSTRICH(X) ∧ ¬AB2(ASPECT3(X)) ⊃ ¬FLIES2(X))

This is another rather lengthy computation, but it tells us that ab2 and
flies2 satisfy the axioms for ab and flies.

17. (UE ((AB.|AB2|) (FLIES.|FLIES2|)) 1 NIL)
; A(AB2, FLIES2) ≡
; (∀X.¬AB2(ASPECT1(X)) ⊃ ¬FLIES2(X))∧
; (∀X.BIRD(X) ⊃ AB2(ASPECT1(X)))∧
; (∀X.BIRD(X) ∧ ¬AB2(ASPECT2(X)) ⊃ FLIES2(X))∧
; (∀X.OSTRICH(X) ⊃ AB2(ASPECT2(X)))∧
; (∀X.OSTRICH(X) ∧ ¬AB2(ASPECT3(X)) ⊃ ¬FLIES2(X))

Now we substitute ab2 and flies2 in the definition of A and get a result we
can compare with step 16.

18. (RW 17 (USE 16))
; A(AB2, FLIES2)
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We have shown that ab2 and flies2 satisfy A.

19. (DERIV E |∀Z.AB(Z) ≡ AB2(Z)| (9 15 18) NIL)
;∀Z.AB(Z) ≡ AB2(Z)
; deps : (4)

9 was the circumscription formula, and 15 and 18 are its two premisses, so
we can now derive its conclusion. Now we know exactly what entities are
abnormal.

20. (RW 8 ((USE 1 MODE : EXACT )
((USE 19 MODE : EXACT ) (OPEN AB2))))
; (∀X.¬(∃X1.BIRD(X1) ∧ X = X1) ⊃ ¬FLIES(X))∧
; (∀X.BIRD(X) ∧ ¬(∃X2.OSTRICH(X2) ∧ X = X2) ⊃ FLIES(X))∧
; (∀X.OSTRICH(X) ⊃ ¬FLIES(X))
; deps : (4)

We rewrite the axiom now that we know what’s abnormal. This gives a
somewhat awkward formula that nevertheless contains the desired conclu-
sion. The occurrences of equality are left over from the elimination of the
aspects that used the axiom of step 2.

21. (DERIV E |∀X.FLIES(X) ≡
BIRD(X) ∧ ¬OSTRICH(X)| (20) NIL)
;∀X.FLIES(X) ≡ BIRD(X) ∧ ¬OSTRICH(X)
; deps : (4)

DERIVE straightens out 20 to put the conclusion in the desired form. The
result is still dependent on the assumption of the correctness of the circum-
scription made in step 4.

Clearly if circumscription is to become a practical technique, the reason-
ing has to become much more automatic.

6.24 APPENDIX B

Here is an annotated EKL proof that circumscribes the predicate e(x, y)
discussed in section 6.

(proof unique names)
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What the user types is indicated by the numbered statements in lower case.
What EKL types is preceded by semicolons at the beginning of each line
and is in upper case. We omit EKL’s type-out when it merely repeats what
the command asked it to do, as in the commands DERIVE, ASSUME and
DEFINE.

1. (axiom |index a = 1 ∧ index b = 2 ∧ index c = 3 ∧ index d = 4|)

Since EKL does not have attachments to determine the equivalence of names,
we establish a correspondence between the names in our domain and some
natural numbers.

2. (derive|¬(1 = 2) ∧ ¬(1 = 3) ∧ ¬(2 = 3) ∧ ¬(1 = 4) ∧ ¬(2 = 4)∧
¬(3 = 4)|)

EKL does know about the distinctness of natural numbers, so this can be
derived.

(der − slow)

We have to tell EKL to use the properties of equality rather than regarding
it as just another predicate symbol in order to do the next step. Sometimes
this leads to combinatorial explosion.

3. (derive |a 6= b| (1 2))

This shows that two names themselves are distinct.

4. (define equiv |∀e.equiv e ≡ (∀x.e(x, x)) ∧ (∀x y.e(x, y) ⊃ e(y, x))
∧(∀x y z.e(x, y) ∧ e(y, z) ⊃ e(x, z))|)

Here we use second order logic to define the notion of equivalence relation.
The first word after “define” is the entity being defined and included between
vertical bars is the defining relation. EKL checks that an entity satisfying
the relation exists.

5. (define ax |∀e.ax e ≡ e(a, b) ∧ equiv e|)
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We define ax as a predicate we want our imitation equality to satisfy. We
have chosen a very simple case, namely making a and b “equal” and nothing
else.

6. (define ax1|∀e.ax1 e ≡ ax e ∧ ∀e1.(ax e1 ∧ (∀ x y.e1(x, y) ⊃ e(x, y))
⊃ (∀x y.e(x, y) ≡ e1(x, y)))|)

This defines ax1 as the second order predicate specifying the circumscription
of ax.

7. (assume |ax1(e0)|)
(label circum)

We now specify that e0 satisfies ax1. It takes till step 17 to determine what
e0 actually is. When EKL includes circumscription as an operator, we may
be able to write something like circumscribe(e0, ax1) and make this step
occur. For now it’s just an ordinary assumption.

8. (define e2 |∀x y.e2(x, y) ≡ (x = a ∧ y = b) ∨ (x = b ∧ y = a)
∨x = y|)

The predicate e2 defined here is what e0 will turn out to be.

9. (derive |equive2| nil (open equiv) (open e2))

Now EKL agrees that e2 is an equivalence relation. This step takes the KL-10
about 14 seconds.

10. (derive |ax e2| (9) (open ax) (open e2))
(label ax e2)

Moreover it satisfies ax.

11. (rw circum (open ax1))
; AX(E0) ∧ (∀ E1.AX(E1) ∧ (∀X Y.E1(X,Y ) ⊃ E0(X,Y )) ⊃
; (∀X Y.E0(X,Y ) ≡ E1(X,Y )))
; deps : (CIRCUM)
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A trivial step of expanding the definition of ax1. EKL tells us that this fact
depends on the assumption CIRCUM. So do many of the subsequent lines of
the proof, but we omit it henceforth to save space.

12. (trw |ax e0| (use 11))
; AX(E0)

The first conjunct of the previous step.

13. (rw 12 (open ax equiv))
(label fact1)
; E0(A,B) ∧ (∀X.E0(X,X)) ∧ (∀X Y.E0(X,Y ) ⊃ E0(Y,X))∧
; (∀X Y Z.E0(X,Y ) ∧ E0(Y, Z) ⊃ E0(X,Z))

We expand ax(e0) according to the definitions of ax and equiv.

14. (derive |∀p q r.(p ∨ q ⊃ r) ≡ (p ⊃ r) ∧ (q ⊃ r)|)
(label rewrite by cases)

This is a fact of propositional calculus used as a rewrite rule in the next step.
A program that can use circumscription by itself will either need to generate
this step or systematically avoid the need for it.

15. (trw |e2(x, y) ⊃ e0(x, y)|
((open e2) (use rewrite by cases mode : always) (use fact1)))

; E2(X,Y ) ⊃ E0(X,Y )

This is the least obvious step, because rewrite by cases is used after some
preliminary transformation of the formula.

16. (derive |∀x y.e0(x, y) ≡ e2(x, y)| (ax e2 11 15))

DERIVE is substituting e2 for the variable e1 in step 11 and using the fact
ax(e2) and step 15 to infer the conclusion of the implication that follows the
quantifier ∀e.

17. (rw 16 (open E2))
;∀X Y.E0(X,Y ) ≡ X = A ∧ Y = B ∨ X = B ∧ Y = A ∨ X = Y
; deps : (CIRCUM)

Expanding the definition of e2 tells us the final result of circumscribing
e0(x, y). A more complex ax(e0) — see step 5 — would give a more com-
plex result upon circumscription. However, it seems that the proof would be
similar. Therefore, it could perhaps be made into some kind of macro.
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Chapter 7

COMMON SENSE
THEORIES OF THE WORLD

7.1 Ontology—or what there is

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy. - Shakespeare

I suspect that there are more things in heaven and
earth than are dreamed of, or can be dreamed of, in

any philosophy. - J. B. S. Haldane

For us ontology concerns what kinds of entities our theories will consider.
There are many more than have been used in AI theories or physical theories
up to now. Many important kinds of entity are ill-defined and approximate.
Shakespeare and Haldane may be right, but we’ll do our best.

1

1Ontology began as a branch of philosophy concerning what entities exist, e.g. whether
material objects, ideas, or numbers exist. The philosopher W.V.O. Quine defined the
ontology of a theory to be the range of its bound variables. Quine’s notion also works well
for logical AI and computer science generally.

Recently ontology has become the focus of much study in computer science, especially in
AI. The result has been interaction among computer scientists, linguists and philosophers.

Philosophers, and now computer scientists, often try to minimize the kinds of objects
admitted to exist and build other entities from these. Common sense thinking uses redun-
dant ontologies. I suspect common sense is right.

125
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In ontology common sense is quite liberal in three important senses, and
logical AI needs to be equally liberal.

The ontology of common sense includes rich entities. A rich entity cannot
be completely described, because it involves an infinite amount of informa-
tion. While rich entities cannot be completely described we can know facts
about them. It’s just that however many facts we have, it isn’t a com-
plete description. The prototypical rich entity is a situation as discussed in
(McCarthy and Hayes 1969a). In that article as situation is taken to be the
complete state of the world at some time. We can’t know it, but we can
know a lot about it. A person is also a rich entity. No matter how much we
know about a person, there is more to be learned.

All kinds of concepts are represented in natural language by nouns and
many are very approximate. Indeed, outside of mathematics and the math-
ematical formalizations of other sciences, almost no entities are completely
precisely defined.

Of course, imprecision often leads people into trouble, but total precision
is impossible, and efforts to make a concept more precise than necessary are
often lead to useless hairsplitting.

Our discussion will be adequate if it has as much clearness as
the subject matter admits of, for precision is not to be sought for
alike in all discussions, any more than in all the products of the
crafts.— Aristotle, Nicomachean Ethics

The usual ontology of the blocks world includes situations, blocks and
often locations. However, if a program is to design structures in the blocks
world, then the ontology must contain structures, designs for structures and
specifications that a structure must meet.

Intentional objects like beliefs, purposes and intentions are needed if the
agent is to ascribe beliefs, etc. to other agents or to think about its own
methods.

Ontology relevant to specific areas of AI are conveniently discussed in the
sections devoted to them.

I am not an adherent of any of the doctrines that have been proposed and am dubious
about the current efforts for standardization. Until more has been said about what kinds
of axioms are wanted, proposals concerning what objects to admit into the ontology are
hard to evaluate.
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7.2 Situations and events

7.2.1 Situation calculus - the language

Much intelligent activity is the achievement of goals by an agent, call it Joe,
performing a sequence of actions—or, more generally, by a strategy of action.
In general, there are other agents and there are natural events. Also some of
the actions and other events are continuous and concurrent. We begin with
the simplest case—in which there is one agent and the actions are discrete
and have definite results.

Situation calculus is a formalism for describing the changes in situations
resulting from events, especially actions of agents. We first discuss simple
situation calculus (sitcalc) for which the basic equation is

s′ = Result(e, s), (7.1)

giving the new situation s′ that results when event e occurs in situation s.
Notice that events are regarded as discrete and having a single new situation
as a result. This is a very important case, perhaps the most important,
but not the most general. In particular, it doesn’t conveniently deal with
continuous change or concurrent events for which modified formalisms are
required. We use sitcalc to refer to this simple situation calculus.

This section is devoted to the language of sitcalc. Reasoning in sitcalc is
in the following sections.

The basic entities of sitcalc are situations and fluents. In the original
papers, situations were taken to be snapshots of the whole world at a given
time. However, this is not the only useful interpretations, so we will treat
sitcalc as an abstract theory.

A fluent is a function whose domain is a space of situations. Three
kinds of fluent appear in the literature—according to the range of the func-
tion. Propositional fluents have truth values as values. These are the most
used, and some treatments of situation calculus use only propositional flu-
ents. Term fluents have values in other spaces, e.g. numbers or locations.
Situational fluents have situations as values. 2

2The situation calculus was first proposed in (McCarthy 1963) and in the much more
widely read (McCarthy and Hayes 1969a). It was not named in those papers. The term
fluent is taken from Newton, and the sitcalc usage isn’t too far from his. 3 Many AI
researchers take actions as the only allowed first argument of the Result. Considering
events other than actions offers no formal difficulties.
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Even though time is continuous, and events are often concurrent, and
there are many actors in general, sitcalc is useful. It is a special case, but
human reasoning often involves this special case. For example, in planning,
a trip often is regarded as a sequence of actions by the traveller. Each step
of the journey or auxiliary action like buying a ticket can conveniently be
considered as resulting in a single new situation. A travel agent usually
provides only sequential plans, although there may be minor concurrencies
like reconfirming a flight. Such plans rely on the benevolence of institutions.
For example, airlines always provide information about how to find the gate
for a continuing flight.

However, the human analog of sitcalc has an elaboration tolerance that
most axiomatic sitcalc formalisms lack. Suppose all the events in the travel
plan are sequential except that the traveler’s laundry is washed by the hotel
while the traveler is out buying a ticket or attending to some other business.
The laundry is promised to be available at 6pm. This one concurrent consid-
eration doesn’t require a complete way for a person to think about the whole
trip, and AI also requires formalisms that tolerate this kind of elaboration
while preserving the simplicity of sitcalc in treating the parts of the trip that
do not require concurrency.

7.2.2 Ontologies for the situation calculus

Here are some kinds of entity.

situation The domain S of situations is both the second argument and the
range of Result(e, s). But what is a situation? There are various useful
interpretations. According to (McCarthy 1963) and (McCarthy and Hayes 1969b),
a situation is a snapshot of the world at an instant of time. However,
none of the situation calculus theories enforce this interpretation and
some don’t even allow it. The original idea was that a situation is a rich
entity, and neither a person nor a robot could ever completely know a
situation, although one could know facts about a situation. It is still
often useful to regard situations as rich entities.

The most limited notion of situation is as a set of values of a known
finite set of variables, e.g. the set of locations of 5 blocks. In this
interpretation s′ = Result(e, s) is a new set of locations of the blocks.

Variable ranging over situations are denoted by s, with decorations
such as primes and subscripts. Situation constants are denoted by S0,
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S1, etc. In general, lower case is used for variables and upper case for
constants, both for individuals and for functions and predicates.

event Events occur in situations and result in new situations. The letter e
is used. Events also may be rich entities, but in most formalizations
they are taken from a finite or parametrized set.

propositional fluent Propositional fluents take as arguments situations
and some other entitities. They may be written as predicates directly
as in On(Block1, Block2, s) asserting that Block1 is on Block2 in situa-
tion s. Or they may be reified leading to writing Holds(On(Block1, Block2), s).

term fluent It is often convenient to use terms like Location(Block1, s).
The possible notations are analogous to those for propositional fluents.
We can write Location(Block1, s) = Block2 or Location(Block1, s) =
Top(Block2) if we want make a clean distinction between blocks and lo-
cations. Reifying further, we get V alue(Location(Block1), s) = Top(Block2).

1. On(Block1, Block2, s) is a propositional fluent interpreted as asserting
that Block1 is on Block2 in situation s. In theories with reified fluents,
it is replaced Holds(On(Block1, Block2), s).

2. Holds(On(Block1, T op(Block2)), s)

3. Result(Move(Block1, T op(Block3)), s)

The other formulas have the same interpretation but differ in the extent
of reification.

7.2.3 Towers of Blocks and other structures

AI study of the blocks world has concentrated (maybe entirely) on planning
the rearrangement of some piles of blocks on a table into another collection
of piles of blocks. We want to go beyond that and consider building, moving
and dismantling compound objects. Here are some considerations.

1. Suppose we define a traffic light as tower consisting of a red block above
a green block with the latter at least three blocks above the ground.
Besides the blocks specified to be red or green, no other blocks are red
or green.
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2. An obvious task is to build a traffic light. The simplest planner uses
a greedy algorithm. It looks for a block to be the base which must be
neither red nor green. Then it looks for the second block, etc. When
it chooses the first block, it may place the block right away or continue
with the construction plan and finish it before moving any blocks.

3. We can therefore consider the design of a traffic light, making a con-
struction plan for a traffic light and actually building it as distinct
tasks. Less concrete than a design is the specification of a traffic light.

4. There are also partially built traffic lights and damaged traffic lights.
Maybe we shall also want to consider future traffic lights.

5. We can move a traffic light from one location to another. Our axioms
may allow moving them as a unit or it may require dismantling the traf-
fic light and moving it block by block. Even if dismantling is required,
we can still have the action of moving it in our ontology.

6. It would seem that these entities are not independently defined but
rather are derived from a basic concept of traffic light by some opera-
tions.

7. The design of a traffic light may be carried out by a sequence of opera-
tions specified in situation calculus. However, the operations available
in design are different from those available in construction. For exam-
ple, it is possible to decide that a red block goes on top before deciding
about the blocks that go below it.

Our goal is to formalize the specification, design, construction planning,
building, dismantling and moving of compound objects, i.e. objects made of
parts connected in specific ways. Future objects, broken object and partially
constructed objects may also be wanted.

Patrick Winston, (Winston 1970) and (Winston 1992), wrote programs
to recognize arches, where an arch consists of two blocks supporting a third.
We will also consider designing and building Winston type arches.

We begin with the design of a traffic light.
One approach is to define a traffic light as a sentence, e.g.

On(A1, T op(A2)) ∧ Red(A1) ∧ Green(A2) ∧ On(A2, T op(A3))∧
Brown(A3) ∧ On(A3, T op(A4)) ∧ Brown(A4) ∧ On(A4, T op(A5))∧
Brown(A5) ∧ On(A5, Table).

(7.2)
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Within a set theoretic formalization of the blocks world, we can define a
traffic light by

TrafficLight(obj) ≡ Islist(obj) ∧ (∀x)(x In obj
→ On(x, qifx = last(obj)qthenTableqelseNext(x, obj))).

(7.3)

Here we are assuming that the set theory has operations on lists.
Definition: A simple structure is a set of ground atomic formulas.
Simple structures occur in model theory where they are called diagrams

and are part of the metamathematics. In computer science, they are called re-
lational databases when they are explicitly represented in a computer system.
We consider them more abstractly,i.e. not necessarily explicitly represented.

We need simple structures as objects in the theory itself, i.e. not just in
the metamathematics. If ss is a simple structure, Objects(ss) is the set of
arguments of the atoms. We do not require that Objects(ss) be finite or that
it be known. In our applications, Objects(ss) will usually be finite, but will
sometimes be unknown or variable. Relations(ss) is the set of relation sym-
bols in ss. It also need not be finite or known, although in our applications
it will be finite and known. We have the wff SimpleStructure(ss).

Finite simple structure constants are written like

Ss1 = {ON(A1, A2), ON(A2, A3), ON(A3, A4), ON(A4, A5), ON(A5, TABLE),
RED(A1), GREEN(A2), BROWN(A3), BROWN(A4), BROWN(A5), A6}.

Here A6 is an object in Ss1 that doesn’t happen to be involved in any of
the relations of Ss1.

Cb1 : On(x, y, S1) ≡ Application(ON,Name(x), Name(y)) ∈ Ss1.

Why all the fuss about On and ON , etc.?
The idea is the On(x, y) is a relation between blocks in the world as

asserted in a certain context, whereas ON(A1, A2) is a member of an abstract
structure.
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7.2.4 Narratives

In M-, an important town in northern Italy, the widowed Mar-
quise of O-, a lady of unblemished reputation and the mother of
several well-brought-up children, inserted the following announce-
ment in the newspapers: that she had, without knowledge of the
cause, come to find herself in a certain situation; that she would
like the father of the child she was expecting to disclose his iden-
tity to her; and that she was resolved, out of consideration for
her family, to marry him.

—the first sentence of The Marquise of O- by Heinrich von Kleist, 1821.

Jane saw the puppy in the window of the pet store. She
pressed her nose against the glass.

—a sentence giving trouble to a natural language understanding program.
A narrative is an account of what happened. We treat it by giving some

situations and some events and some facts about them and their relations.
Situations in a narrative are partially ordered in time. The real situations
may be totally ordered, but the narrative does not include full information
about this ordering. Thus the temporal relations between situations in dif-
ferent places need only be described to the extent needed to describe their
interactions.

7.2.5 Induction in situation calculus

We do not wish to presume a unique initial situation S0 from which all
situations are reachable by results of some events. Therefore, our induction
is in terms of a predicate reachable(s0, s). The axiom is the second order
sentence

(∀s0)(reachable(s0, s0)
∧
(∀s e)(reachable(s0, s) → reachable(s0, result(e, s)))
∧
(∀P )(P (s0)
∧(∀s e)(P (s) → P (result(e, s)))
→ (∀s)(reachable(s0, s) → P (s))))

(7.4)
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7.2.6 Two dimensional entities

The world is three dimensional, but we can know more about two dimensional
objects.

As a major example, we consider the relation between the surface of the
earth (or of limited regions), maps and what people can learn and know
about the surface with limited opportunities to observe.

How to express the fact that any region, e.g. California, has more detail
than any map can express?

7.3 Three dimensional objects

We and our robots live in a world of three dimensional objects. What we4

can know about objects is severely limited by our ability to observe them
and to represent information about them internally. What we can do with
these objects is also limited. This poses severe problems for AI systems to
describe and manipulate objects. We begin with an informal treatment.

What can people do with 3-dimensional objects that we can make robots
do?

An object has three important and related aspects.

1. What it is. This includes parts that cannot be observed, either for the
present or for the indefinite future.

2. What we can perceive about it and learn about it.

3. What we can remember and communicate about it.

Here are some considerations.

1. What we humans can discover about an object from observation is
limited by the senses we happen to have. Humans have vision over a
limited range of wavelengths. Even within that range an infinite di-
mensional space of reflectivities as a function frequency is compressed
into a three dimensional space. Humans have touch and a very lim-
ited (compared to many animals) sense of smell. Humans are slightly
sensitive to infrared through our skins but don’t have anything the pit
viper’s “third eye”. We don’t have a bat’s sonar abilities. Imagine what

4“We” sometimes refers both to people and robots.
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it would be like to see each others’ innards. “Oh, you can recognize
George by his large flat liver”.

Robots need not be limited to human senses. We can give them a wider
electromagnetic spectrum, sensitivity to particular lines, and more than
three dimensions of color resolution. They can have eyes further apart
and eyes on the ends of arms for taking a close look. They can have
sonar at a variety of frequencies and phased arrays of microphones for
ears. They can have mechanically sensitive antennas at resolutions
all the way down to that of the atomic force microscope. They can
have gigabytes and perhaps eventually moles of memory to store their
sensory informations and what they compute with it.

However, present robots are even more limited sensorily than people.
In particular, no-one has gotten much from the sense of touch, e.g.
what permits me to pick particular objects out of a pocket.

2. Our perception depends on memory of the object in question and of
similar objects. More generally, it is dependent on theories of objects,
e.g. the relations between a person’s hands and his feet.

3. The objects in the environment are often quite complex, and are some-
times even more complex than they usually are. Human object percep-
tion depends on the objects we successfully perceive and manipulate
having features that commonly exist and are helpful. These features
include

• Reflectance properties resulting an apparent color that is reason-
ably discriminable under normally varied lighting.

• Reasonable shapes that don’t change too fast.

7.3.1 Representation of 3-dimensional objects

There are two cases. We may need to represent an object located in space
or reperesent the object apart from any particular locatition.

1. A point in space. Even if we represent the object by a point, we can
attach attributes to it, e.g. color, material and even size.

2. A rectangular parallelopiped with sides parallel to some axes we are
using.
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3. A rectangular parallelopiped in no particular orientation can be appro-
priate when the object is not located in space.

4. Sometimes objects, especially artificial objects, have definite geometric
shapes - or are as close to those shapes as the purpose warrants. This
is an easy case, especially for computers.

5. A hard case is an unfamiliar animal—say a badger.
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Chapter 8

Situation Calculus

[This chapter Latexed May 30, 2004]

8.1 What is situation calculus?

The term situation calculus, abbreviated sitcalc, has been used variously in
the AI literature. Moreover, various formalisms have been developed under
that name.

Here’s a characterization that covers all the usages I know about, but
many of the proposed definitions are more narrow.

The ontology includes situations, fluents and events. Usually the events
are actions of some agent, but an action is just a special kind of event.

Situations are states of affairs. In the original formulation, (McCarthy 1963)
and (McCarthy and Hayes 1969a), they were advertised as states of the whole
world. As such situations could not be fully described; one could only say
something about a situation, and this is done with fluents.1

There are propositional fluents that can be true or false in a situation,
e.g. It-is-raining(s) asserts that it is raining in situation s. Term fluents have
values in a situation, e.g. Color(B1, s) = Red or Height(B1, s) = 3.5cm. The
occurrence of events in a situation produces new situations. In most sitcalc
theories situations are not so grand as to be states of the world but rather
partial states of some part of it.

1Entities about which one can have only partial information are called rich. There is a
general discussion of them in Chapter 4.

137
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Convention: Symbols denoting constants are capitalized and symbols
denoting variables are lower case. This applies to objects, to functions and
to predicates. Free variables in formulas are generally taken to be universally
quantified unless the formula itself is the object of discussion.

Situation calculus is used to express theories about states of
affairs and the effects of actions and other events.

Such theories were first proposed in (McCarthy 1963) and further devel-
oped in (McCarthy and Hayes 1969a), but the term situation calculus was
not defined in those papers, so I can’t claim authority for my precise use of
the term. There is a good treatment in (Shanahan 1997).

As characterized above, situation calculus can include concurrent events
and continuously acting events, and we will cover these topics in this chapter.
However, most situation calculus theories in the AI literature have been much
narrower and have conformed to what I now want to call sequential situation
calculus.

Sequential situation calculus is based on a function Result, where Result(e, s)
is the new situation that results when event e occurs in situation s. In the
literature, e is usually an action, and in that case we write

s′ = Result(a, s). (8.1)

We begin with sequential situation calculus.
Raymond Reiter (Reiter 2001) defined an important form of situation

calculus, I’ll call Bbsitcalc. Bbsitcalc, there is a base situation S0, and all
situations arise from S0 by iteration of the function Result(a, s). Moreover,
situations arising from distinct sequences of actions are regarded as distinct.2

Reiter defined a planning system called Golog that has been used for robot
control by the Toronto group.

8.2 Basics of the sequential situation calculus

Situations can be regarded as states of affairs. In (McCarthy and Hayes 1969a)
they were taken as states of the whole world. A key idea is that you can’t
fully describe a state of the world, but you can say something about a state

2Reiter gave his version the name “situation calculus”, but it’s not the only important
possibility. Therefore, I call his verision “big bang sitcalc”, taking S0 as analogous to the
“big bang” of current cosmological theories.”
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of the world. It is sometimes convenient to make theories in which situations
represent much more modest states. A key point is that one nevertheless
expresses the theories in terms of facts about situations rather than by fully
specifying the situation even when this is possible. This makes the theory
more elaboration tolerant, because new fluents can be added by adding sen-
tences rather than by modifying a definition of situation.

Facts about situations are expressed using fluents, a term taken from
Newton, who, it seems to me, meant something similar. A propositional
fluent is a predicate on situations.

Here are some examples.

1. It-is-raining(s) asserts that it is raining in the situation s. Clearly this
makes sense only when the situations refer to a somewhat localized
state of affairs.

2. On(B1, B2, s) asserts that block 1 is on block 2 in situation s.

3. At(block, l, s) asserts that block is at location l in situation s.

4. Red(B1, s) asserts that B1 is red in situation s.

We also have ordinary predicates and functions of objects. When we
assert Red(B1) we are making an assertion that is not situation dependent.
Intuitively, B1 is red in all situations. Color(B1) = Red is another way of
making the same assertion.

Truth values of propositions do not change in situation calculus. When
something changes, the fact that it depends on the situation must be explicit.
When fluents and ordinary predicates are used in the same theory, we will use
different symbols for them. Thus Red(B1) and Red(B1, s) will not appear
in the same theory, although in principle, predicates of one argument and
predicates of two arguments could use the same names without ambiguity.
We will have use for the function Top(block) designating the top of a block
as a locations.

Term fluents take values other than truth values. Which kinds of values
are allowed depends on the specific situation calculus theory.

Here are some examples.

1. Location(B1, s). With this and the function Top, we can write equa-
tions like Location(B1, s) = Top(B2). Using Top may strike some
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people as finicky. We might just write Location(B1, s) = B2 to mean
the same thing. However, we often have good reason to consider loca-
tions and blocks to be of different sorts; sometimes we need to quantify
over the set of blocks and sometimes over the set of locations.

2. Color(B1, s) = Red makes a clear assertion. We can also have Height(B1, s) =
3.2cm.

Events occur in situations, and we use e for a variable ranging over events.
In the simplest sitcalc theories that have been studied, the events are actions.
In this case we use the variable a. In these simple theories, there is only one
actor, so we can write actions like Move(B1, T op(B2)) for an action in the
much studied blocks world theories. If we want to distinguish actors, we can
have the event Does(George,Move(B1, T op(B2))).

Here are further examples of events and actions.

1. Paint(B1, Red) is the action of painting B1 red.

The main function of situation calculus is Result(e, s).

s′ = Result(e, s) (8.2)

asserts that s′ is the situation that results when the event e occurs in situation
s.

Sequential sitcalc theories are based on the function Result and present
very restricted models of events. Each event produces a single new situation,
there are no continuous processes, and events are not concurrent. Never-
theless, sequential sitcalc, which most writers call situation calculus without
qualification, has been a powerful tool in AI. Moreover, it corresponds to
the way people think about many problems. “Doing A1 creates the pre-
conditions for action A2, which in turn creates the precondition for A3, etc.
(Reiter 2001) presents a situation calculus theory for which there is a problem
solving system called Golog.

8.2.1 A simple blocks world theory Tbl1

There are three blocks, B1, B2, and B3.
There are locations Table, Top(B1), Top(B2), Top(B3).
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There is an initial situation S0. The locations of the blocks are charac-
terized by the sentence

At(B1, Table, S0) ∧ At(B2, Table, S0) ∧ At(B3, T op(B2), S0). (8.3)

The blocks also have colors that depend on the situation. These are given
by the sentence

Color(B1, S0) = Red∧Color(B2, S0) = Red∧Color(B3, S0) = Black.(8.4)

We have two actions Move(block, location) and Paint(block, color).
Their effects are partly characterized by the equations

PrecondMove(block, l, s) → At(block, l, Result(Move(block, l), s))(8.5)

and

PrecondPaint(block, s) → Color(block,Result(Paint(block, color), s)) = color.(8.6)

Suppose our goal is to make a traffic light, consisting of a red block on a
green block on a black block.

Consider the situation

S ′ = Result(Move(B1, T op(B2)), Result(Move(B2, T op(B3)),
Result(Move(B3, Table), Result(Paint(B2, Green), S0)))).

(8.7)

We can also use an abbreviated notation

S ′ = Result(
Paint(B2, Green);
Move(B3, Table);
Move(B2, T op(B3));
Move(B1; Top(B2))

, S0).

(8.8)

The abbreviated notation is easier to read and write but would require a more
complicated axiomatization if it were part of the language. Therefore, we
consider it just as a syntactic abbreviation. Then we don’t have to axiomatize
it but merely to provide for expanding any instances of it into the official
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notation. Thus (8.8) expands to (8.7), and we only prove statements about
(8.8). 3

We want S ′ to have the desired properties, namely

Color(B1, S ′) = Red ∧ Color(B2, S ′) = Green ∧ Color(B3, S ′) = Black
∧On(B1, B2, S ′) ∧ On(B2, B3, S ′) ∧ On(B3, Table, S ′).∧

(8.9)

However, (8.9) won’t follow logically until we make quite a few additional
assumptions.

Here are some assumptions.

1. The block names—B1, B2 and B3—denote distinct, unique objects.
We can express this with the sentence

B1 6= B2 ∧ B1 6= B3 ∧ B2 6= B3. (8.10)

It is customary to use the syntactic abbreviation UNA(B1, B2, B3),
due to Baker, which expands to (8.10) to express distinction. (UNA
stands for “unique names assumption”.). UNA is not a function in
the logic, because UNA(B1, B2, B3) does not depend on the values
of the symbols B1, B2 and B3 but is an assertion about the symbols
themselves. Thus UNA(A,A) does not make sense, because it expands
to A 6= A.

UNA(α1, . . . , αn) abbreviates the conjunction of 1

2
n(n − 1) sentences.

If we have n objects to discuss, it is tedious to write 1

2
n(n−1) sentences.

4

3Suppose A1, A2, A3, and A4 are four actions. It will always be true that

Result(A3;A4, Result(A1;A2), s) = Result(A1;A2;A3;A4, s),

but the only way to prove it is to expand the formulas into compositions of single actions.
4We can get by with a number of sentences proportional to n in any several ways.

1. Introduce a relation G(x,y) satisfying the axioms

G(x, y ∧ G(y, z) → G(x, z),
¬G(x, x)
G(B1, B2) ∧ G(B2, B3) ∧ . . . ∧ G(Bn−1, Bn).

(8.11)

This forces the Bi to be all different.
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2. We often need to delimit the set of blocks. The most straightforward
way to do this is to write

b = B1 ∨ b = B2 ∨ b = B3, (8.15)

where b is a variable of sort Block. This assumes we are using a sorted

2. It can also be done with a sentence

Index(B1) = 1 ∧ . . . ∧ Index(Bn) = n, (8.12)

where we presuppose axioms for the natural numbers assuring that they are all different.
3. If we use a function B : Z+ → Blocks, and denote blocks by B(1), B(2), etc., we get

by with asserting

i 6= j → B(i) 6= B(j)

and the axioms required to assure that the natural numbers are all distinct, which we are
likely to want anyway.

4. If we use set theory, we can write

Card({B1, B2, B3, B4, B5}) = 5. (8.13)

Here {B1, B2, B3, B4, B5} denotes the set whose elements are B1,B2,B3,B4, and B5, and
Card(u) denotes the cardinality of the set u.

5. We also need axioms like

Top(b1) = Top(b2) → b1 = b2

and

Top(b) 6= Table.

6. More generally, we need axioms to insure that expressions that should denote distinct
objects actually do.

Prolog has unique names built into its structure and doesn’t require unique names ax-
ioms. This simplifies some Prolog programs and complicates those where different symbols
may denote the same object. Consider the sentence

Card({B1, B2, B3, B4, B5}) = 4, (8.14)

which tells us that two of the blocks are the same but doesn’t assert which two. This
tells us that it is sometimes better to assert unique names by axioms than by syntactic
convention.

Assuming that we want set theory anyway, the set theoretic formula (8.13) is the most
compact way of asserting unique names.
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logic. If we don’t want to assume a sorted logic, this becomse

IsBlock(b) → b = B1 ∨ b = B2 ∨ b = B3. (8.16)

However, this assumes that B1, B2, and B3 are all the blocks in the
world, which precludes elaborating T bl1 to include another table with
additional blocks. Therefore, we prefer to write

Block(x, bl1) → x = B1 ∨ x = B2 ∨ x = B3; (8.17)

With set theory we can write

Blocks(bl1) = {B1, B2, B3}. (8.18)

In either case, that a block be present needs to be part of the precondi-
tion for moving it, painting it and for its top to be a location to which
things can be moved.

3. Our axioms for moving blocks will often require that the block’s top be
clear and also that the location to which we wish to move the block be
clear. In the given example with blocks B1, B2 and B3, we can assure
that the B1 and B2 are clear in several ways.

1. The most straightforward way is to introduce a predicate Clear(b)
asserting that block b is clear and axiomatizing it in general by

Clear(b) ≡ (∀y)(¬At(y, Top(b)). (8.19)

and in the particular case by

Clear(B1) ∧ Clear(B2). (8.20)

2. Clear(x) can also be introduced as a syntactic abbreviation for
(∀y)(¬At(y, Top(b)), which keeps the model theory more compact, but
I prefer the explicit predicate.
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4. The precondition for moving a block x to a location l is that both
Top(x) and l be clear, i.e.

Precond(Move(x, l), s) ≡ Clear(Top(x), s) ∧ Clear(l, s). (8.21)

There is no precondition for painting a block in the simple blocks world
T bl1, so we always have Precond(Paint(x, c), s).

5. We need more axioms to ensure that fluents that an action doesn’t
explicitly change retain their values. In T bl1 it is convenient to write
these frame axioms as

Color(x,Result(Move(y, l), s)) = Color(x, s),
x 6= y → Color(x,Result(Paint(y, c), s)) = Color(x, s),

At(x, l, Result(Paint(y, c), s)) ≡ At(x, l, s),
and

x 6= y → At(x, l′, Result(Move(y, l), s)) ≡ At(x, l′, s).

(8.22)

Because we have only two fluents At(x, l, s) and Color(x, s) and two ac-
tions Move(x, l) and Paint(x, c), (8.22) consists of just four sentences.
With m fluents and n actions, this method requires mn sentences.
There is a further disadvantage. It is convenient to state the facts
about moving blocks once and for all. It is inconvenient to be required
to state additional facts about the non-effect of moving blocks on the
colors of blocks, their smell or on whether it is raining.

This is called the frame problem and its the subject of the next section.

However, we have done enough to prove the desired facts (8.9) about
S ′.

8.3 The frame problem

The frame problem has two aspects. The first is to be able to compactly
describe the effects of some events on some fluents without having to include
for each action-fluent pair an explicit sentence when the action does not
change the value of the fluent. Many systems satisfy this goal. The second
objective is to maintain elaboration tolerance of the addition of new fluents
and actions to the formalism. Systems that meet the first goal may not meet
the second.
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8.4 Beyond sequential situation calculus

8.5 Elaborating sequential sitcalc to handle

concurrency

Consider two sequential sitcalc theories. Call them D and J for Daddy and
Junior, respectively. Let each of them be formalized with sequential sitcalc
sentences of the form

s′ = Result(e, s). (8.23)

We have

D : At(Daddy,NY, S0) (8.24)

J : At(Junior,Glasgow, S0).

The fact that the term S0 occurs in both formulas does not mean that
it designates the same situation. The context prefixes D and J keep them
separated. We can reason separately about Daddy and Junior in the two
contexts.

Let’s now introduce an outer context c. We have

c : D : At(Daddy,NY, S0) (8.25)

c : J : At(Junior,Glasgow, S0).

We can now express the distinctness of the two occurrences of S0 by
writing

c : value(D,S0) 6= value(J, S0). (8.26)

We can write the whole of (8.25) in the outer context as

c : V alue(D,At)(V alue(D,Daddy), V alue(D,NY ), V alue(D,S0))(8.27)

c : V alue(J,At)(V alue(J, Junior), V alue(J,Glasgow), V alue(J, S0)).
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5 However, we are more likely to want to keep the value of all these entities
except for S0 the same and write

c : At(Daddy,NY, V alue(D,S0)) (8.28)

c : At(Junior,Glasgow, V alue(J, S0)).

Now suppose we want to combine the Daddy and Junior stories with a
view to introducing an interaction between Daddy and Junior as discussed in
(McCarthy 1995b) and (McCarthy and Costello 1998). We introduce a new
context DJ (for Daddy-Junior). We need to translate sentences and terms
from the D and J contexts into DJ .

Consider the sentence

J : Has-ticket(x, y, s)∧At(x, s) → At(y, Result(Fly(x, y), s)).(8.29)

It requires several changes before it can meaningfully inhabit DJ , and these
seem to involve giving up some of the advantages sequential sitcalc, i.e. of
the Result(e, s) formalism. Here are some of those advantages.

1. Applications of Result can be composed, e.g. to get

Result(a3, Result(a2, Result(a1, s))),

representing the effect of three successive actions.
2. In sequential sitcalc, there is only one actor, so the actor can remain

implicit. We will have to replace Fly(x, y) by Does(Junior, F ly(x, y)) when
we lift to a context with more than one actor.

Before combining two contexts, e.g. D and J , we need to go from the
Result to one involving occurs(e, s) and s < s′. We also need time(s) and
the axioms

time(Result(e, s)) > time(s) (8.30)

and

s < s′ → time(s′) > time(s). (8.31)

5Making at context dependent would require using a higher order logic. We can con-
template this with equanimity, especially as we don’t have immediate plans to make at

context dependent.
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Here’s the main axiom for going from Result to occurs.

π(s, Result(e, s)) ∧ occurs(e, s) ∧ ¬ab1(e, s)
→ (∃s′)(s < s′ ∧ π(s, s′).

(8.32)

I expect that the formalism with occurs and < is more readily liftable than
the Result formalism. I’m assuming, as with the previous axioms, that all the
variables are universally quantified, but I’m not sure that this is the correct
formula.

I used π(s, s′) in order to accomodate (8.30) and (8.31).
It looks like we should do the unabbreviations in D and J separately.

Thus we have

J : has(x, s) ≡ has(Junior, x, s)
J : at(x, s) ≡ at(Junior, x, s)
J : fly(x, y) = does(Junior, fly(x, y))
D : has(x, s) ≡ has(Daddy, x, s)
D : send(x, y) = does(Daddy, send(x, y))

(8.33)

Here we have escaped contradiction by the coincidence that the different
occurrences of has, etc. take different numbers of arguments. In general, we
will have to change some names.

Consider combining the Daddy and Junior narratives or combining the
planning problems. Let’s take a stripped down version of story in (McCarthy 1996b)
and (McCarthy and Costello 1998). We’ll say that Junior can buy a ticket
but mention the need for money and not provide him with any. We can
suppose that Daddy has money and can send it to Junior. Maybe we can
put that action in the context D, i.e. with the axiom

has(Junior, ticket-money, Result(send(ticket-money, Junior, s))).(8.34)

Junior is now a character in the Daddy narrative, i.e. is in the ontology
of the context D, and we will have to identify him with the Junior of J when
we combine the narratives. There are a few other problems.

1. We have to get the right time relations. There is no a priori relation
between the times of D and J .

2. I don’t want to say that in the combined context DJ

DJ : S0 = Result(send(ticket-noney, Junior, s)).
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We need to put the time of arrival of the money before the time when
Junior buys the ticket. Therefore, we need an additional persistence axiom
to say that if Junior has the money as a result of Daddy sending it, he will
still have it later unless something happens to get rid of it.

We’ll first consider what sentences we want to appear in DJ and then
consider how to get them there from D, J , from reasonable axioms about
combining the contexts and from reasonable axioms about the combined
context itself.

”Mann muss immer umkehren” - Jacobi to his students. Planning is the
inverse of projection. There are two ways in which the nonmonotonic inertia
laws can be seen to fail. (1) The block is too heavy, so the action of moving
it fails. The second is that Block1 is observed to be not on top of Block2,
so something must have happened. The first is the straightforward intent of
making the law of inertia nonmonotonic. The second has offered difficulties.

Chronological minimization. We express inertia by minimizing ab at each
situation. The variable predicate has two arguments f and e. The important
clause is

(∀ab′vars)¬(ab′(f, a) < ab(f, a, s)) (8.35)

8.6 Relations among event formalisms
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Chapter 9

FORMALIZING CONTEXTS
AS OBJECTS

Let my name be Ishmael.
Let the ship’s name be Pequod.
Let the captain’s name be Ahab.
Let the whale’s name be as given in the title.

- from If a mathematician had written Moby Dick

A mouse click in a context lifts to an assertion or command in a larger
language.
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Chapter 10

ELABORATION
TOLERANCE

Abstract of this chapter
A formalism is elaboration tolerant to the extent that it is convenient

to modify a set of facts expressed in the formalism to take into account
new phenomena or changed circumstances. Representations of information
in natural language have good elaboration tolerance when used with human
background knowledge. Human-level AI will require representations with
much more elaboration tolerance than those used by present AI programs,
because human-level AI needs to be able to take new phenomena into ac-
count.

The simplest kind of elaboration is the addition of new formulas. We’ll
call these additive elaborations. Next comes changing the values of param-
eters. Adding new arguments to functions and predicates represents more
of a change. However, elaborations not expressible as additions to the ob-
ject language representation may be treatable as additions at a meta-level
expression of the facts.

Elaboration tolerance requires nonmonotonic reasoning. The elaborations
that are tolerated depend on what aspects of the phenomenon are treated
nonmonotonically. Representing contexts as objects in a logical formalism
that can express relations among contexts should also help.

We use the missionaries and cannibals problem and about 20 variants as
our Drosophila in studying elaboration tolerance in logical AI.

The present version has only some parts of a situation calculus formaliza-
tion. However, the English language elaborations listed are enough to serve
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as a challenge to logical AI formalisms claiming elaboration tolerance.

10.1 Introduction

In several papers, e.g. (McCarthy 1988) and (McCarthy 1989), I discussed
the common sense informatic situation and contrasted it with the informa-
tion situation within a formal scientific theory. In the latter, it is already
decided what phenomena to take into account. In the former, any informa-
tion possessed by the agent is available and potentially relevant to achieving
its goals. Elaboration tolerance seems to be the key property of any formal-
ism that can represent information in the common sense informatic situation.
1

Elaboration tolerance2 is the ability to accept changes to a person’s or a
computer program’s representation of facts about a subject without having
to start all over. Often the addition of a few sentences describing the change
suffices for humans and should suffice for computer programs.

Humans have considerable elaboration tolerance, and computers need it
to reach human-level AI. In this article we study elaboration tolerance in
terms of logical AI. However, researchers pursuing other AI methodologies
will also have to face the problem of elaboration tolerance; maybe they just
haven’t noticed it yet. The relation to belief revision will be discussed briefly
in section 12.7.

Humans represent information about the world in natural language and
use background knowledge not ordinarily expressed in natural language and
which is quite difficult to express. 3 The combination of linguistic and
non-linguistic knowledge is what gives us humans our elaboration tolerance.
Unfortunately, psychological research hasn’t yet led to enough understanding
of the background knowledge, so it is hard to study elaboration tolerance in
humans. However, it is easy to give plenty of examples of human elaboration
tolerance, e.g. those in this article.

12004 Jan: I now contrast the common sense informatic situation with a bounded

informatic situation.
2The concept was first mentioned in (McCarthy 1988).
3The non-linguistic background knowledge has been emphasized in connection with

physical skills by Hubert Dreyfus and others (Dreyfus 1992), but there is important non-
linguistic knowledge also when the skill is purely symbolic. Even though a mathematician
or a stock broker operates in a purely symbolic domain, he still cannot verbalize his full
set of skills.
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The Drosophila4 of this article is the missionaries and cannibals problem
(MCP).

After describing the original MCP, we give a large number of elaborations.
Humans tolerate these elaborations in the sense that we can use the sentences
expressing one of the elaborations to get a modified problem. People will
agree on what the modified problem is and will agree on whether a proposed
solution is ok.

Then we consider logical formalizations of the original problem and dis-
cuss which elaborations different formalisms tolerate. Our goal—not achieved
in this article—is a formalism for describing problems logically that is as
elaboration tolerant as English and the associated background knowledge.
However, some logical languages are more elaboration tolerant than others.5

10.2 The Original Missionaries and Canni-

bals Problem

The missionaries and cannibals problem (abbreviated MCP):

Three missionaries and three cannibals come to a river
and find a boat that holds two. If the cannibals ever out-
number the missionaries on either bank, the missionaries
will be eaten.

How shall they cross?

We call this original version of the problem MCP0.
Saul Amarel proposed (Amarel 1971): Let a state (mcb) be given by the

numbers of missionaries, cannibals and boats on the initial bank of the river.
The initial situation is represented by 331 and the goal situation by 000.

4Drosophilas are the fruit flies that have been used by geneticists to study inheritance
since 1910. Their short generation times, large chromosomes and the ability to keep 1,000
of them in a bottle make them valuable, even though the Drosophilas of today are no
better than those of 1910. The utility of suitable Drosophilas for scientific research in AI
needs to be emphasized, because of a recent fad for demanding that all research promise
a practical payoff on a three year schedule. They aren’t getting their payoffs and are
learning much less than a more scientific approach would get them.

52004 Jan 26: The introduction of concepts and propositions as objects as in
(McCarthy 1979c) can be handled as an elaboration. I think this corresponds to what
people do. More on this in a new section.
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Most AI texts that mention the problem accept this formulation and give
us the solution:

331 → 310 → 321 → 300 → 311 → 110 → 221 → 020 → 031 → 010 → 021 → 000.

The state space of the Amarel repreentation has 32 elements some of
which are forbidden and two of which are unreachable. It is an elementary
student exercise to write a program to search the space and get the above
sequence of states, and people are always solving it without a computer or
without even a pencil. Saul Amarel (Amarel 1971) points out that this rep-
resentation has fewer states than a representation with named missionaries
and cannibals.

What more does this problem offer AI?
If one indeed begins with the Amarel representation, the problem is indeed

trivial. However, suppose we want a program that begins, as people do,
with a natural language presentation of the problem. It is still trivial if
the program need only solve the missionaries and cannibals problem. The
programmer can then cheat as much as he likes by making his program
exactly suited to the MCP. The extreme of cheating is to make a program
that merely prints

331 → 310 → 321 → 300 → 311 → 110 → 221 → 020 → 031 → 010 → 021 → 000.

Readers will rightly complain that this cheats, but it isn’t clear what does
and doesn’t count as cheating when a method for solving a single problem is
asked for.

The way to disallow cheating is to demand a program that can solve any
problem in a suitable set of problems. To illustrate this we consider a large
set of elaborations of MCP. It won’t be trivial to make a program that can
solve all of them unless the human sets up each of them as a state space
search analogous to the original MCP. We demand that the program use
background common sense knowledge like that about rivers and boats that
is used by a human solver.

We skip the part about going from an English statement of the problem
to a logical statement for two reasons. First, we don’t have anything new
to say about parsing English or about the semantics of English. Second, we
don’t yet have the logical target language that the parsing program should
aim at. Progress toward establishing this language is the goal of the paper.
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The problem is then to make a program that will solve any of the problems
using logically expressed background knowledge. The background knowledge
should be described in a general way, not specifically oriented to MCP and
related problems.

This much was already proposed in (McCarthy 1959). What is new in
the present paper is spelling out the idea of elaboration tolerance that was
distantly implicit in the 1959 paper. We require a formulation of MCP that
readily tolerates elaborations of the problem and allows them to be described
by sentences added to the statement of the problem rather than by surgery
on the problem. We can call these additive elaborations. English language
formulations allow this, but the Amarel-type formulations do not. AI requires
a logical language that allows elaboration tolerant formulations.

We begin a few examples of English language elaboration tolerance. After
discussing situation calculus formalisms, there will be a lot more.

• The boat is a rowboat. (Or the boat is a motorboat). This elaboration
by itself should not affect the reasoning. By default, a tool is usable.
Later elaborations make use of specific properties of rowboats.

• There are four missionaries and four cannibals. The problem is now
unsolvable.

• There is an oar on each bank. One person can cross in the boat with
just one oar, but two oars are needed if the boat is to carry two people.

• One of the missionaries is Jesus Christ. Four can cross. Here we are
using cultural literacy. However, a human will not have had to have
read Mark 6: 48–49 to have heard of Jesus walking on water.

• Three missionaries with a lone cannibal can convert him into a mis-
sionary.

A later section discusses the formal problems of these and other elabora-
tions.

10.3 Nonmonotonic reasoning

Elaboration tolerance clearly requires nonmonotonic reasoning. For exam-
ple, elaborating MCP0 with a requirement for oars adds preconditions to the
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action of going somewhere in the boat. If oars are not mentioned, nonmono-
tonic reasoning prevents such additional preconditions.

However, it is still not clear how to formulate the nonmonotonic reasoning
so as to obtain tolerance of a wide class of elaborations, such as those of
section 10.7. We propose to use some variant of circumscription, but this
still leaves open what is to be circumscribed.

(McCarthy 1980) discusses several nonmonotonic aspects of the human
understanding of MCP0. They all have a Gricean (Grice 1989) character.
They all concern the non-existence of features of the problem that should
have been mentioned, were they supposed to exist. What can be inferred
from such contexts includes the Gricean implicatures. Very likely, the formal
theory of contexts (McCarthy 1993) can be used, but that is beyond the
scope of this article.

Here are a few nonmonotonic inferences that come up. Each of them
seems to present its own formal problems.

• If there were a bridge, it should have been mentioned. A puzzle problem
like MCP is given in a context.

• The river can’t be forded, and there isn’t an extra boat.

• There isn’t a requirement for a permit or visa to cross the river.

• There is nothing wrong with the boat. In general, when a tool is
mentioned, it is supposed to be usable in the normal way.

• The group of missionaries and cannibals is minimized. Mentioning
that one of the missionaries is Jesus Christ will include him in the
number otherwise inferrable rather than adding him as an additional
missionary. Of course, assertions about him in the general database
should have no effect unless he is mentioned in the problem.

• If you keep transporting cannibals to the island (in the variant with an
island) they will eventually all be at the island.

These kinds of nonmonotonic reasoning were anticipated in (McCarthy 1980)
and have been accomodated in situation calculus based nonmonotonic for-
malisms, although the Yale shooting problem and others have forced some
of the axiomatizations into unintuitive forms.

The elaborations discussed in this article mainly require the same kinds
of nonmonotonic reasoning.
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10.4 A Typology of Elaborations

There are many kinds of elaborations a person can tolerate, and they pose
different problems to different logical formalizations. Here are some kinds of
elaborations.

irrelevant actors, actions and objects Sentences establishing the exis-
tence of such entities should not vitiate the reasoning leading to a
solution.

adding preconditions, actions, effects of actions and objects The ex-
ample of the oars adds a precondition to rowing and adds the action
of picking up the oars. Several situation calculus and event calculus
formalisms allow this—assuming sentences are added before the non-
monotonic reasoning is done. Tolerating added preconditions is a cri-
terion for good solutions of the qualification problem, and tolerating
adding effects relates similarly to the ramification problem.

changing a parameter This is needed when the numbers of missionaries
and cannibals are changed from 3 to 4. In English, this is accomplished
by an added sentence. Doing it that way in logic requires a suitable
belief revision method as part of the basic logical formalism. At present
we must use minor brain surgery to replace certain occurrences of the
number 3.

making a property situation dependent Whether x is a missionary is
not situation dependent in MCP0, but we can elaborate to a missionary
becoming a cannibal. It is tempting to say that all properties should be
situation dependent from the beginning, and such a formalism would
admit this elaboration easily. I think this might lead to an infinite
regress, but I can’t formulate the problem yet.

specialization In one situation calculus formalization we have the action
Move(b1, b2). If there are guaranteed to be exactly two places, we
can replace this action by Move(b), regarding this as Move(b, Opp(b)),
where Opp(b) designates the opposite bank and satisfies Opp(Opp(b)) =
b. We regard this kind of specialization as an easy kind of elaboration.

generalization Some of our elaborations can be composed of an general-
ization of the language—replacing a function by a function of more
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arguments, e.g. making whether a person is a cannibal or missionary
situation dependent or replacing going from a bank b to the opposite
bank Opp(b) by going from b1 to b2. Many elaborations consist of a
generalization followed by the addition of sentences, e.g. adding pre-
conditions or effects to an action.

unabbreviation This is a particular case of generalization. Suppose we
write (∀a ∈ Actions)Abbreviates[a,Does(person, a)]. We mean to use
it in elaborating Result(a, s) to Result(Does(person, a), s) in sentences
where it is somehow clear which person is referred to. The square brack-
ets mean that this is a metalinguistic statement, but I don’t presently
understand precisely how unabbreviation is to work.

going into detail An event like the action of crossing the river is made up
of subactions. However, the relation between an event and its subevents
is not often like the relation between a program and its subroutines,
because asserting that the action occurs does not imply specific subac-
tions. Rowing is a detail of crossing a river when rowboats are used,
but rowing is not a part of the general notion of crossing a river.. Bail-
ing if necessary is another detail. Getting oars or a bailing can are
associated details. There is more about this apparently controversial
point in (McCarthy 1995b).

m. . . s and c. . . s as agents MCP and almost all of the elaborations we
have considered take a god-like view of the actions, e.g. we send a
cannibal to get an oar. We can also elaborate in the direction of
supposing that the actions of cannibals and missionaries are some-
times determined by the situation. In this case, it may be conve-
nient to use a predicate Occurs(event, s) and let one possible event
be Does(C1, Enter-Boat). The situation calculus treatment has to be
altered and looks more like event calculus.

simple parallel actions If one of the missionaries is Jesus Christ, we can
transport 4 missionaries and 4 cannibals. We get 3 cannibals on the far
bank and one on the initial bank. Then two ordinary missionaries and
Jesus cross, the ordinaries in the boat and Jesus walking on water. The
rest of the solution is essentially the same as in MCP0. A missionary
and a cannibal row back and now the remaining two missionaries cross.
We then send a cannibal to ferry the remaining two cannibals. We
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haven’t tackled the problem of being able to say “essentially the same”
in logic.

The formalization must permit Jesus to cross in parallel with the other
missionaries so that the missionaries are never outnumbered. This isn’t
the same as having Jesus cross as a separate action.

full parallelism This is what permits requiring that the boat be bailed.

events other than actions The simple Result(a, s) doesn’t allow for events
other than actions. To handle them we have used (McCarthy 1995b) a
predicate Occurs(e, s) asserting that the event e occurs in the situation
s. Then Result(e, s) can be used.

comparing different situations This works ok in situation calculus, but
some other formalisms don’t allow it or make it awkward. Thus we
can have s <better Result(e, s) to say that the situation is better after
event e occurs. We may also want Result(a1, s) <better Result(a2, s),
comparing the result of doing a1 with the result of doing a2.

splitting an entity Sometimes an entity, e.g. a node in a graphy, an edge,
or a concept needs to be split into two entities of the same type so that
separate properties can be assigned to each subentity. Thus we may
split cannibals into strong and weak cannibals.

continuous time and discrete time If Achilles runs enough faster than
the tortoise, there is a time when Achilles catches up. We use the
fluent Future(π, s) to assert that the situation s will be followed in the
future by a situation satisfying π. We do not require formalizing real
numbers to express the Achilles catching up sentence

Future((λs)(V alue(Distance-covered-by(Achilles), s)
= V alue(Distance-covered-by(Tortoise), s)), S0).

Concepts and propositions as objects The ideas of (McCarthy 1979c)
are directly usable. Let’s add some sentences which are a conservative
extension of the original theory.

Missionaries = {Tom,Dick,Harry}
Distinct(Tom,Dick,Harry)
Jesus ∈ Missionaries
henceJesus = Tom ∨ Jesus = Dick ∨ Jesus = Harry.

(10.1)
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Now suppose we want to say that Sam knows that Jesus is Tom.

We introduce

denot(JJesus) = Jesus
denot(TTom) = Tom

(10.2)

Here we have had to change the notation of (McCarthy 1979c), because
that paper uses capitalization to distinguish between concepts and or-
dinary objects, whereas this paper uses capitalization for constants.
What we do is double the first letter to denote concepts. Equations
(10.1) and (10.2) are just a conservative extension of the original theory,
because they serve just to define new terms.

Now we write

Know(Sam,EEqual(JJesus, TTom). (10.3)

If we use the theory of (McCarthy 1979c), this is a non-conservative
extension, because it permits inferring

Jesus = Tom. (10.4)

The main point is that the whole apparatus of concepts and knowledge
is just an elaboration of a theory without it.

10.5 Formalizing the Amarel Representation

We use logic and set theory to formalize MCP0 and call the formalization
MCP0a. In this formalization we are not concerned with elaboration tol-
erance. My opinion is that set theory needs to be used freely in logical
AI in order to get enough expressiveness. The designers of problem-solving
programs will just have to face up to the difficulties this gives for them.

States = Z4 × Z4 × Z2

(∀state)(Ok(state) ≡
Ok1(P1(state), P2(state)) ∧ Ok1(3 − P1(state), 3 − P2(state)))
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Here Z2 = {0, 1} and Z4 = {0, 1, 2, 3} are standard set-theory names
for the first two and the first four natural numbers respectively, and P1,
P2 and P3 are the projections on the components of the cartesian product
Z4 × Z4 × Z2.

Note that having used 3 − P1(state) for the number of missionaries on
the other bank put information into posing the problem that is really part
of solving it, i.e. it uses a law of conservation of missionaries.

(∀m c)(Ok1(m, c) ≡ m ∈ Z4 ∧ c ∈ Z4 ∧ (m = 0 ∨ m ≥ c))

Moves = {(1, 0), (2, 0), (0, 1), (0, 2), (1, 1)}

(∀move state)
(Result(move, state) = Mkstate( P1(state) − (2P3(state) − 1)P1(move),

P2(state) − (2P3(state) − 1)P2(move),
1 − P3(state))),

where Mkstate(m, c, b) is the element of States with the three given compo-
nents.

(∀s1 s2)(Step(s1, s2) ≡ (∃move)(s2 = Result(move, s1) ∧ Ok(s2)))

Attainable1 = Transitive-closure(Step)

Attainable(s) ≡ s = (3, 3, 1) ∨ Attainable1((3, 3, 1), s)

Notice that all the above sentences are definitions, so there is no question
of the existence of the required sets, functions, constants and relations. The
existence of the transitive closure of a relation defined on a set is a theorem
of set theory. No fact about the real world is assumed, i.e. nothing about
rivers, people, boats or even about actions.

From these we can prove

attainable((0, 0, 0)).

The applicability of MCP0a to MCP must be done by postulating a cor-
respondence between states of the missionaries and cannibals problem and
states of MCP0a and then showing that actions in MCP have suitable corre-
sponding actions in MCP0a. We will postpone this until we have a suitable
elaboration tolerant formalization of MCP.

MCP0a has very little elaboration tolerance, in a large measure because
of fixing the state space in the axioms. Situation calculus will be more
elaboration tolerant, because the notation doesn’t fix the set of all situations.
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10.6 Situation Calculus Representations

The term situation calculus is used for a variety of formalisms treating situa-
tions as objects, considering fluents that take values in situations, and events
(including actions) that generate new situations from old.

At present I do not know how to write a situation calculus formalization
that tolerates all (or even most) of the elaborations of section 10.7. Nev-
ertheless, I think it is useful to give some formulas that accomplish some
elaborations and discuss some issues of elaboration tolerance that these for-
mulas present.

10.6.1 Simple situation calculus

We begin with some axioms in a formalism like that of (McCarthy 1986)
using a Result function, a single abnormality predicate and aspects. This
suffers from the Yale shooting problem if we simply minimize Ab. However,
as long as the problem requires only projection, i.e. predicting the future
from the present without allowing premises about the future, chronological
minimization of Ab (Shoham 1988) avoids the Yale shooting problem. It is
certainly a limitation on elaboration tolerance to not allow premises about
the future.

Here are some axioms and associated issues of elaboration tolerance.
The basic operation of moving some people from one bank to the other

is conveniently described without distinguishing between missionaries and
cannibals.

¬Ab(Aspect1(group, b1, b2, s)) →
V alue(Inhabitants(b1), Result(Cross(group, b1, b2), s)) =

V alue(Inhabitants(b1), s) \ group
∧

V alue(Inhabitants(b2), Result(Cross(group, b1, b2), s)) =
V alue(Inhabitants(b2), s) ∪ group,

(10.5)

where \ denotes the difference of sets.
The fact that (10.5) can’t be used to infer the result of moving a group

if some member of the group is not at b1 is expressed by

¬(group ⊂ V alue(Inhabitants(b1), s)) → Ab(Aspect1(group, b1, b2, s)).
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We extend the notion of an individual being at a bank to that of a group
being at a bank.

Holds(At(group, b), s) ≡ (∀x ∈ group)Holds(At(x, b), s).

¬Ab(Aspect2(group, b1, b2, s)) ∧ Crossable(group, b1, b2, s)
→ ¬Ab(Aspect1(group, b1, b2, s))

(10.6)

relates two abnormalities.

Crossable(group, b1, b2, s) → 0 < Card(group) < 3 (10.7)

tells us that the boat can’t cross alone and can’t hold more than two.

Card(u) denotes the cardinality of the set u.

We can sneak in Jesus by replaceing (10.7) by

Crossable(group, b1, b2, s) → 0 < Card(group \ {Jesus}) < 3, (10.8)

but this is not in the spirit of elaboration tolerance, because it isn’t an added
sentence but is accomplished by a precise modification of an existing sentence
(10.7) and depends on knowing the form of (10.7). It’s education by brain
surgery.

It’s bad if the cannibals outnumber the missionaries.

Holds(Bad(bank), s)
≡
0 < Card({x|x ∈ Missionaries ∧ Holds(At(x, bank), s)})
< Card({x|x ∈ Cannibals ∧ Holds(At(x, bank), s)})

(10.9)

and

Holds(Bad, s) ≡ (∃bank)Holds(Bad(bank), s). (10.10)

Many unique names axioms will be required. We won’t list them in this
version.
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10.6.2 Not so simple situation calculus

The notion of Bad in the previous subsection avoids any actual notion of the
missionaries being eaten. More generally, it avoids any notion that in certain
situations, certain events other than actions will occur. We can put part of
this back.

We would like to handle the requirement for oars and the ability of Jesus
Christ to walk on water in a uniform way, so that we could have either, both
or neither of these elaborations.

To say that the missionaries will be eaten if the cannibals outnumber
them can be done with the formalism of (McCarthy 1995b).

Holds(Bad(bank), s) →
(∀x)(x ∈ Missionaries

∧Holds(At(x, bank), s) → Occurs(Eaten(x), s)).
(10.11)

As sketched in (McCarthy 1995b), the consequences of the occurrence of
an event may be described by a predicate Future(f, s), asserting that in
some situation in the future of the situation s, the fluent f will hold. We can
write this

Future(f, s) → (∃s′)(s <time s′ ∧ Holds(f, s′)), (10.12)

and treat the specific case by

occurs(Eaten(x), s) → F (Dead-soon(x), s) (10.13)

To say that something will be true in the future of a situation is more
general than using Result, because there is no commitment to a specific next
situation as the result of the event. Indeed an event can have consequences
at many different times in the future. The Result(e, s) formalism is very
convenient when applicable, and is compatible with the formalism of Occurs
and F . We have

¬Ab(Aspect2(e, s))∧Occurs(e, s) → Future((λs′)(s′ = Result(e, s)), s),(10.14)

where something has to be done to replace the lambda-expression (λs′)(s′ =
Result(e, s)) by a syntactically proper fluent expression. One way of doing
that is to regard Equal(Result(e, s)) as a fluent and write

¬Ab(Aspect2(e, s))∧Occurs(e, s) → Future(Equal(Result(e, s))).(10.15)
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We may get yet more mileage from the Result formalism. Suppose
Result(e, s) is taken to be a situation after all the events consequential
to e have taken place. We then have one or more consequences of the
form Past(f,Result(e, s)), and these permit us to refer to the consequences
of e that are distributed in time. The advantage is that we can the use
Result(e, s) as a base situation for further events.

10.6.3 Actions by Persons and Joint Actions of Groups

When there is more than one actor acting, we can consider three levels of
complexity. The simplest level is when the actors act jointly to achive the
goal. The second level is when one actor (or more than one) does something
to motivate the others, e.g. one person pays another to do something. This
generalizes to a hierarchy of influence. The hard level is when the actors
have competing motivations and must negotiate or fight. This is the subject
of game theory, and we won’t pursue it in this article.

As MCP was originally formulated, the missionaries and cannibals are
moved like pieces on a chessboard. Let’s consider elaborations in which the
actions of individual missionaries and cannibals are considered. One eventual
goal might be to allow a formalization in which a cannibal has to be persuaded
to row another cannibal across the river and bring the boat back. However,
our discussion starts with simpler phenomena.

We now consider an action by a person as a particular kind of event.
What we have written Result(a, s) we now write Result(Does(person, a), s).
If there is only one person, nothing is gained by the expansion.

Consider a proposition Can-Achieve(person, goal, s), meaning that the
person person can achieve the goal goal starting from the situation s. For the
time being we shall not say what goals are, because our present considerations
are independent of that decision. The simplest case is that there is a sequence
of actions {a1, . . . , an} such that

Result(Does(person, an), Result(. . . Result(Does(person, a1), s) . . .))

satisfies goal.
Now let’s consider achievement by a group. We will say Can-Achieve(group, goal, s)

provided there is a sequence of events {Does(person1, a1), . . . , Does(personn, an)},
where each personi is in group, and the personis are not assumed to be dis-
tinct, and such that

Result(Does(personn, an), Result(. . . Result(Does(person1, a1), s) . . .))
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satisfies goal.
We can now introduce a simple notion of a person leading a group, written

leads(person, group) or more generally leads(person, group, s). We want the
axioms

leads(person, group) ∧ Can-Achieve(group, goal, s) → Can-Achieve(person, s)

Thus a leader of a group can achieve whatever the group can achieve.
Note that person need not be a member of group for this definition to work.

We could give the same definition for leads(person, group, s), but maybe
it would be better to make a definition that requires that person maintain
his leadership of group in the succeeding situations.

Leads(person, group) is too strong a statement in general, because the
members of a group only accept leadership in some activities.

10.7 Formalizing some elaborations

1. The boat is a rowboat. (Or the boat is a motorboat). By itself this
is a trivial elaboration. Adding it should not affect the reasoning. By
default, a tool, i.e. the boat, is usable. Further elaborations might use
specific properties of rowboats.

2. The missionaries and cannibals have hats, all different—another trivial
elaboration. These hats may be exchanged among the missionaries and
cannibals. In all the elaborations mentioned below, exchanging hats is
an action irrelevant to crossing the river. There are two demands on
the reasoner. Epistemologically, whatever reasoning that establishes a
plan for crossing the river without the hats should be valid with the
hats. This includes any nonmonotonic reasoning.

Heuristically, the problem may not be trivial. Why should it be obvious
that exchanging hats is of no use? Certainly we can make elaborations
in which it is of use, e.g. we can assert that if the smallest missionary
wears the hat belonging to the largest missionary, the largest cannibal
won’t eat him even if they go together.

However, it should be possible to tell a problem solver: Look for a
solution that has no hat change actions. After that, the reasoner should
find the solution as easily as it would if hats were never mentioned.
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3. There are four missionaries and four cannibals. The problem is now
unsolvable. In ordinary logic, adding sentences that there are four of
each produces a contradiction. Belief revision systems ought to make
the correct change. It seems to me that people take a metalinguistic
stance, just saying “Change the numbers of missionaries and cannibals
to four”, thus regarding the original statement of the problem as an
object. Actually what is regarded as an object is the sense of the
original statement, since people ordinarily don’t remember the words
used.

Proofs of impossibility take the following form. Choose a predicate
formula φ(s) on situations. Show φ(S0) and (∀s)(φ(s) → ¬Goal(s)).
Also show

(∀s a)(φ(s) → Bad(Result(a, s)) ∨ φ(Result(a, s))).

Thus you can’t get out of the situations satisfying φ, and the goal
isn’t included. The simplest φ(s) is a disjunction of specific locations
of the missionaries and cannibals in the reachable situations, but this
disjunction is long, and it is very likely possible to do better.

We can regard the argument that four can’t cross as a kind of elabo-
ration. A formalism that doesn’t permit expressing the best argument
is then deficient in elaboration tolerance.

4. The boat can carry three. Four can cross but not five. If the boat can
carry four an arbitrary number can cross. [2003 Sept: This is mistaken.
Joohyung Lee showed that if the boat holds three, five can cross.]

5. There is an oar on each bank. One person can cross in the boat with
just one oar, but two oars are needed if the boat is to carry two people.
We can send a cannibal to get the oar and then we are reduced to the
original problem. 6

A formalism using preconditions can accept this elaboration as just
adding a precondition for rowing, the action of putting an oar in the
boat and adding facts about the locations of the oars in S0.

6It was not mentioned before that the boat was a rowboat. Once oars are mentioned,
it is a Gricean implicature that the boat is a rowboat. The philosopher Paul Grice
(Grice 1989) studied what can be inferred from statements under the assumption that
the person posing the problem is not trying to be misleading. That the boat is a rowboat
follows, because the speaker should have said so if it wasn’t.
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The oar-on-each-bank elaboration can be expressed by conjoining to
(10.16),

Card(group) > Card({x|Oar(x) ∧ Holds(In(x,Boat), s)})
→ Ab(Aspect1(group, b1, b2, s)),

but this looks a bit ad hoc. In particular, it wouldn’t tolerate the
further elaboration of making the boat hold three if that elaboration
were expressed as the single sentence

Crossable(group, b1, b2, s) → 0 < Card(group) < 4

In order to admit the reasoning that getting the oar reduces the problem
to MCP0, we will need a notion of one problem reducing to another—or
one theory reducing to another.

6. Only one missionary and one cannibal can row. The problem is still
solvable. Before this elaboration, we did not need to distinguish among
the missionaries or among the cannibals. An elaboration tolerant lan-
guage must permit this as an addition. We use

¬(∃x)(x ∈ group∧Rower(x)) → Ab(Aspect1(group, b1, b2, s)).(10.16)

and

(∃!x ∈ Cannibals)Rower(x)∧(∃!x ∈ Missionaries)Rower(x)(10.17)

7. The missionaries can’t row. This makes the problem impossible, since
any solution requires two missionaries in the boat at some time. The
formalism must admit the statement and proof of this lemma.

For this we need (10.16) and (∀x ∈ Missionaries)¬Rower(x).

8. The biggest cannibal cannot fit in the boat with another person. The
problem is solvable. However, if the biggest missionary cannot fit in
the boat with another person the problem becomes unsolvable. We
can imagine having to elaborated in the direction of saying what sets
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of people can fit in the boat. The elaborations are BigC ∈ Cannibals
and

Crossable(group) ∧ BigC ∈ group → group = {BigC}. (10.18)

Note that the defining property of the biggest cannibal is unnecessary
to make the elaboration work. I assume we’d pay for this shortcut,
were further elaboration necessary.

The corresponding elaboration about the biggest missionary is formal-
ized in the same way; only the conclusion is different.

9. If the biggest cannibal is isolated with the smallest missionary, the lat-
ter will be eaten. A solution to the basic problem can be specialized to
avoid this contingency. We have the Gricean implicature that the can-
nibals aren’t all the same size, and need to have language for referring
to an individual as the biggest cannibal and not just language to refer
to him by name. We have

group = {BigC, SmallM} → ¬Crossable(group, b1, b2, s),(10.19)

and

Inhabitants(bank, s) = {BigC, SmallM} → Holds(Bad(bank), s).(10.20)

10. One of the missionaries is Jesus Christ. Four can cross. Here we are
using cultural literacy. However, a human will not have had to have
read Mark 6: 48–49 to have heard of Jesus walking on water. The
formalism of Section 10.6 permits this elaboration just by adjoining
the sentence

Crossable(group, b1, b2, s) → Crossable(group∪{Jesus}, b1, b2, s).(10.21)

However, this elaboration says nothing about walking on water and
therefore seems to be a cheat.
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11. Three missionaries alone with a cannibal can convert him into a mis-
sionary. The problem for elaboration tolerance is to change a predicate
that doesn’t depend on situation or time to one that does. Note that
a sorted logical language with missionaries and cannibals as distinct
sorts would freeze the intolerance into the language itself.

12. The probability is 1/10 that a cannibal alone in a boat will steal it. We
can ask what is the probability that a given plan will succeed, say the
Amarel plan. The formalism of (McCarthy 1979a) treats propositions
as objects. Using that formalism Pr(p) = 1/10 can be expressed for any
proposition p. I see at least two problems. The language of propositions
as objects needs to be rich enough to express notions like the probability
of a cannibal stealing the boat on an occasion—or of being a thief who
always steals boats if alone. The second problem is that we need to be
able to assert independence or joint distributions without letting the
entire formalism be taken over by its probabilistic aspects. In MCP0,
cannibals have to be alone in the boat several times. We can write a
formula that states that probabilities are independent by default.

We now need to infer that the probability of successfully completing
the task is 0.9.

13. There is a bridge. This makes it obvious to a person that any number
can cross provided two people can cross at once. It should also be an
obvious inductive argument in the sense of McAllester (McAllester ).
This is a straightforward elaboration in situation calculus formalisms,
since adding the bridge is accomplished just by adding sentences. There
is no need to get rid of the boat unless this is part of the elaboration
wanted.

14. The boat leaks and must be bailed concurrently with rowing. Elabo-
ration tolerance requires that treating a concurrent action be a small
change in the statement of the problem, and this will show the limita-
tions of some versions of situation calculus.

15. The boat may suffer damage and have to be taken back to the left
bank for repair. This may happen at any time. This requires that
the formalism permit splitting the event of crossing the river into two
parts.
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16. There is an island. Then any number can cross, but showing it requires
inductive arguments. Though inductive, these arguments should be
obvious. Defining the three stages—moving the cannibals to the island,
moving the missionaries to the opposite bank and then moving the
cannibals to the opposite bank—is an easy three step problem, provided
moving the sets of missionaries and cannibals can be regarded as tasks.
Whether the elaboration is easy depends on the original representation.

There may be a nonmonotonic rule that if you keep getting closer to
a goal and there is no inferrable obstacle you will achieve the goal.
Zeno’s “paradox” of Achilles and the tortoise involves noting that this
rule doesn’t always hold, i.e. is nonmonotonic. Such a rule would make
the above induction easy and maybe obvious.

17. There are four cannibals and four missionaries, but if the strongest of
the missionaries rows fast enough, the cannibals won’t have gotten so
hungry that they will eat the missionaries. This could be made precise
in various ways, but the information is usable even in vague form.7

18. There are four missionaries and four cannibals, but the cannibals are
not hungry initially, and the missionaries have a limited amount of
cannibal food. They can tell if a cannibal is hungrier than he was
and can avoid trouble by giving the food to the cannibal who has got
hungrier. This requires comparing a situation and a successor situation.

19. There are two sets of missionaries and cannibals too far apart along
the river to interact. The two problem should be solvable separately
without considering interleaving actions at the two sites. If the two
problems are different elaborations, the work required and the length
of the proof should be the sum of the lengths for the separate problems
plus a small constant.

The theory of two sets of missionaries should be a conservative exten-
sion of each of the subtheories. We have called this property conjunc-
tivity.

There are N sites along the river with identical conditions. The rea-
soning should be able to do one site, or a generalized site, and, with a
constant amount of additional reasoning, say that all N crossings are
the same.

7“Pull, pull, my good boys”, said Starbuck.—Moby Dick, XLVIII
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20. After rowing twice, a person becomes too tired to row any more. [Added
2003 April 1].

10.8 Remarks and Acknowledgements

1. The English language elaborations don’t refer to an original English
text. If someone has read about the problem and understands it, he
usually won’t be able to quote the text he read. Moreover, if he tells
the problem to someone else more than once, he is unlikely to use the
same words each time. We conclude from this that that a person’s
understanding of MCP is represented in the brain in some other way
than as an English text. For the purposes of this paper we don’t need
to speculate about how it is represented, since the formal elaboration
tolerance applies to logical formulations.

2. Some commonly adopted conventions in theories of actions interfere
with elaboration tolerance. An example is identifying situations or
events with intervals of time. You can get away with it sometimes, but
eventually you will be sorry. For example, you may want to say that a
good move is one that leads to a better situation with

Good(a, s) ≡ s <good Result(a, s).

3. Elaboration tolerance and belief revision have much in common, but we
are looking at the problem from the opposite direction from researchers
in belief revision. Belief revision studies have mainly concerned the
effect of adding or removing a given sentence, whereas our treatment
of elaboration tolerance concerns what you must add or change to get
the effect you want. Moreover, the effect of an elaboration can involve
changing the first order language and not just replacing one expression
in the language by another.

4. Elaboration tolerance is rather straightforward when the theory to be
changed has the structure of a cartesian product, and the elaboration
can be describes as giving some components of the product new values.
(McCarthy 1979b) discusses theories with cartesian product structures
in connection with counterfactuals, and (McCarthy 1962c) discusses
the semantics of assignment, i.e. the semantics of changing components
of a state.
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5. Murray Shanahan (Shanahan 1997) considers many issues of elabora-
tion tolerance in his discussions of action formalisms. In particular, his
solutions for the frame problem are considerably elaboration tolerant.
I qualified the above, because I consider elaboration tolerance an open
ended problem.

6. I suspect that elaboration tolerance requires a proper treatment of hy-
pothetical causality and this involves counterfactual conditional sen-
tences. Counterfactuals will be treated in a shortly forthcoming paper
by Tom Costello and John McCarthy. For example, we need a non-
trivial interpretation of “If another car had come over the hill while
you were passing, there would have been a head-on collision” that is
compatible with the fact that no car came. By non-trivial interpreta-
tion, I mean one that could have as a consequence that a person should
change his driving habits, whereas no such conclusion can be reached
from sentences of the form p → q when p is false.

7. We can distinguish between a formalism admitting a particular elabora-
tion and the consequences of the elaboration being entirely determined.
For example, the Jesus Christ elaboration could be given alternate in-
terpretations and not just the one about his ability to walk on water.

Another example (suggested by Tom Costello) has the original story say
that the capacity of the boat is one less than the number of missionaries.
Then changing the number of missionaries and cannibals to 4 leaves the
problem still solvable, even though the set of logical consequences of
the sentences of the two formalisms is the same. This tells us that
if we translate the English to logic and take all logical consequences,
information that determines the effects of elaborations can be lost.

This chapter has benefitted from discussions with Eyal Amir, Tom Costello,
Aarati Parmar and Josephina Sierra.
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Chapter 11

THEORIES OF
APPROXIMATE OBJECTS

11.1 Difficulties with semantics

Consider the blocks world. A simple blocks world theory T1 has relations
like On(Block1, Block2). The language cannot express anything about the
precise location of Block1 on Block2. Suppose now that we have a richer
theory T2 in which one block can be displaced by a vector (x, y) from being
centered on another, but the edges are still required to be parallel. For
this we can use a predicate On(b1, b2, x, y). T1 is then an aproximation to
T2, and we could regard a description of a table with blocks in T1 to be
an approximation to a description in T2. A still richer theory T3 allows one
block to be at an angle on another, whereas T4 lets the blocks be rectangular
parallelopipeds of arbitrary dimensions.

We can have an equation like

Ist(T1, On(b1, b2)) ≡ (∃x y)(Ist(T2, On(b1, b2, x, y))). (11.1)

If we allow ourselves to change the predicate symbols in order to merge
T1 and T2, we can write the simpler formula

On1(b1, b2) ≡ (∃x y)On2(b1, b2, x, y). (11.2)

However, we prefer the formulation using contexts, because it allows keep-
ing T1 and T2 intact and relating them via context.
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Now consider the semantics of T1, supposing that we designed T1 first.
It has a relation On(b1, b2) and doesn’t know about x and y. The semantics
of T2 is quite different. How should we relate them?

This Berkeley abstract attracted quite a few requests for the paper.



Chapter 12

Consciousness in AI systems

Conscious knowledge and other information is distinguished from uncon-
scious information by being observable, and its observation results in con-
scious knowledge about it. We call this introspective knowledge.

A robot will need to use introspective knowledge in order to operate in
the common sense world and accomplish the tasks humans will give it.

Many features of human consciousness will be wanted, some will not, and
some abilities not possessed by humans have already been found feasible and
useful in limited domains.

We give preliminary fragments of a logical language a robot can use to
represent information about its own state of mind.

A robot will often have to conclude that it cannot decide a question on
the basis of the information in memory and therefore must seek information
externally.

Programs with much introspective consciousness do not yet exist.

Thinking about consciousness with a view to designing it provides a new
approach to some of the problems of consciousness studied by philosophers.
One advantage is that it focusses on the aspects of consciousness important
for intelligent behavior. If the advocates of qualia are right, it looks like
robots won’t need them to exhibit any behavior exhibited by humans.

12.1 Introduction

For the purposes of this article a robot is a continuously acting computer
program interacting with the outside world and not normally stopping. What
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physical senses and effectors or communication channels it has are irrelevant
to this discussion except as examples.

This article discusses consciousness with the methodology of logical AI.
(McCarthy 1989) contains a recent discussion of logical AI. AI systems that
don’t represent information by sentences can have only limited introspective
knowledge.

12.1.1 About Logical AI

(McCarthy 1959) proposed programs with common sense that represent what
they know about particular situations and the world in general primarily by
sentences in some language of mathematical logic. They decide what to do
primarily by logical reasoning, i.e. when a logical AI program does an impor-
tant action, it is usually because it inferred a sentence saying it should. There
will usually be other data structures and programs, and they may be very im-
portant computationally, but the main decisions of what do are made by log-
ical reasoning from sentences explicitly present in the robot’s memory. Some
of the sentences may get into memory by processes that run independently of
the robot’s decisions, e.g. facts obtained by vision. Developments in logical
AI include situation calculus in various forms, logical learning, nonmono-
tonic reasoning in various forms ((McCarthy 1980), (McCarthy 1986), (?),
(Lifschitz 1994)), theories of concepts as objects (McCarthy 1979c) and the-
ories of contexts as objects (McCarthy 1993), (McCarthy and Buvač 1998).
(McCarthy 1959) mentioned self-observation but wasn’t specific.

There have been many programs that decide what do by logical reasoning
with logical sentences. However, I don’t know of any that are conscious of
their own ongoing mental processes, i.e. bring sentences about the sentences
generated by these processes into memory along with them. We hope to
establish in this article that some consciousness of their own mental processes
will be required for robots to reach a level intelligence needed to do many
of the tasks humans will want to give them. In our view, consciousness
of self, i.e. introspection, is essential for human level intelligence
and not a mere epiphenomenon. However, we need to distinguish which
aspects of human consciousness need to be modelled, which human qualities
need not and where AI systems can go beyond human consciousness.
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12.1.2 Ascribing mental qualities to systems

A system, e.g. a robot, can be ascribed beliefs provided sentences expressing
these beliefs have the right relation to the system’s internal states, inputs and
output and the goals we ascribe to it. (Dennett 1971) and (Dennett 1978)
calls such ascriptions the intentional stance. The beliefs need not be explicitly
represented in the memory of the system. Also Allen Newell, (?) regarded
some information not represented by sentences explicitly present in memory
as nevertheless representing sentences or propositions believed by the system.
Newell called this the logic level. I believe he did not advocate general purpose
programs that represent information primarily by sentences.1 I do.

(McCarthy 1979b) goes into detail about conditions for ascribing belief
and other mental qualities.

To ascribe certain beliefs, knowledge, free will, intentions, con-
sciousness, abilities or wants to a machine or computer program
is legitimate when such an ascription expresses the same infor-
mation about the machine that it expresses about a person. It
is useful when the ascription helps us understand the structure
of the machine, its past or future behavior, or how to repair or
improve it. It is perhaps never logically required even for humans,
but expressing reasonably briefly what is actually known about
the state of a machine in a particular situation may require as-
cribing mental qualities or qualities isomorphic to them.

(McCarthy 1979b) considers systems with very limited beliefs. For exam-
ple, a thermostat may usefully be ascribed one of exactly three beliefs—that
the room is too cold, that it is too warm or that its temperature is ok. This
is sometimes worth doing even though the thermostat may be completely
understood as a physical system.

Tom Costello pointed out to me that a simple system that doesn’t use
sentences can sometimes be ascribed some introspective knowledge. Namely,
an electronic alarm clock getting power after being without power can be said
to know that it doesn’t know the time. It asks to be reset by blinking its
display. The usual alarm clock can be understood just as well by the design

1Newell, together with Herbert Simon and other collaborators used logic as a domain
for AI in the 1950s. Here the AI was in programs for making proofs and not in the
information represented in the logical sentences.
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stance as by the intentional stance. However, we can imagine an alarm clock
that had an interesting strategy for getting the time after the end of a power
failure. In that case, the ascription of knowledge of non-knowledge might be
the best way of understanding that part of the state.

12.1.3 Consciousness and introspection

We propose to design robot consciousness with explicitly represented beliefs
as follows. At any time a certain set of sentences are directly available for
reasoning. We call these the robot’s awareness. Some of them, perhaps
all, are available for observation, i.e. processes can generate sentences about
these sentences. These sentences constitute the robot’s consciousness. In this
article, we shall consider the awareness and the consciousness to coincide; it
makes the discussion shorter.

Some sentences come into consciousness by processes that operate all the
time, i.e. by involuntary subconscious processes. Others come into conscious-
ness as a result of mental actions, e.g. observations of its consciousness, that
the robot decides to take. The latter are the results of introspection and
constitute self-consciousness.

Here’s an example of human introspection. Suppose I ask you whether
the President of the United States is standing, sitting or lying down at the
moment, and suppose you answer that you don’t know. Suppose I then ask
you to think harder about it, and you answer that no amount of thinking
will help. (Kraus et al. 1991) has one formalization. A certain amount of
introspection is required to give this answer, and robots will need a corre-
sponding ability if they are to decide correctly whether to think more about
a question or to seek the information they require externally. 2

We discuss what forms of consciousness and introspection are required

2Here’s an ancient example of observing one’s likes and not knowing the reason.

“Non amo te, Zabidi, nec possum dicere quare;
Hoc tantum possum dicere, non amo te.”

by Martial which Tom Brown translated to

I do not like thee, Dr. Fell
The reason why I cannot tell,
But this I know, I know full well,
I do not like thee, Dr. Fell.
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for robots and how some of them may be formalized. It seems that the
designer of robots has many choices to make about what features of human
consciousness to include. Moreover, it is very likely that useful robots will
include some introspective abilities not fully possessed by humans.

Two important features of consciousness and introspection are the ability
to infer nonknowledge and the ability to do nonmonotonic reasoning.

12.2 What Consciousness does a Robot Need?

12.2.1 Easy introspection

In some respects it is easy to provide computer programs with more powerful
introspective abilities than humans have. A computer program can inspect
itself, and many programs do this in a rather trivial way by computing check
sums in order to verify that they have been read into computer memory
without modification.

It is easy to make available for inspection by the program the manuals
for the programming language used, the manual for the computer itself and
a copy of the compiler. A computer program can use this information to
simulate what it would do if provided with given inputs. It can answer a
question like: “Would I print “YES” in less than 1,000,000 steps for a certain
input? A finitized version of Turing’s argument that the halting problem is
unsolvable tells us that that a computer cannot in general answer questions
about what it would do in n steps in less than n steps. If it could, we (or a
computer program) could construct a program that would answer a question
about what it would do in n steps and then do the opposite.

We humans have rather weak memories of the events in our lives, espe-
cially of intellectual events. The ability to remember its entire intellectual
history is possible for a computer program and can be used by the program
in modifying its beliefs on the basis of new inferences or observations. This
may prove very powerful.

Very likely, computer programs can be made to get more from reading
itself than we presently know how to implement.

The dual concept to programs reading themselves is that of programs
modifying themselves. Before the invention of index registers (B-lines) at
Manchester, programs did indexing through arrays and telling subroutines
where to return by program modification. It was sometimes stated that self-
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modification was one of the essential ideas of using the same memory for
programs and data. This idea went out of fashion when major computers,
e.g. the IBM 704 in 1955, had index registers.

As AI advances, programs that modify themselves in substantial ways
will become common. However, I don’t treat self-modification in this article.

Unfortunately, these easy forms of introspection are insufficient for intel-
ligent behavior in many common sense information situations.

12.2.2 Serious introspection

To do the tasks we will give them, a robot will need many forms of self-
consciousness, i.e. ability to observe its own mental state. When we say
that something is observable, we mean that a suitable action by the robot
causes a sentence and possibly other data structures giving the result of the
observation to appear in the robot’s consciousness.

This section uses two formalisms described in previous papers.
The first is the notion of a context as a first class object introduced in

(?) and developed in (McCarthy 1993) and (McCarthy and Buvač 1998). As
first class objects, contexts can be the values of variables and arguments and
values of functions. The most important expression is Ist(c, p), which asserts
that the proposition p is true in the context c. Propositions true in subcon-
texts need not be true in outer contexts. The language of a subcontext can
also be an abbreviated version of the language of an outer context, because
the subcontext can involve some assumptions not true in outer contexts. A
reasoning system can enter a subcontext and reason with the assumptions
and in the language of the subcontext. If we have Ist(c, p) in an outer context
c0, we can write

c : p,

and reason directly with the sentence p. Much human reasoning, maybe
all, is done in subcontexts, and robots will have to do the same. There is
no most general context. The outermost context used so far can always be
transcended to a yet outer context. A sentence Ist(c, p) represents a kind of
introspection all by itself.

The second important formalism is that of a proposition or individual con-
cept as a first class object distinct from the truth value of the proposition or
the value of the individual concept. This allows propositions and individual
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concepts to be discussed formally in logical language rather than just infor-
mally in natural language. One motivating example from (McCarthy 1979c)
is given by the sentences

denotation(Telephone(Person)) = telephone(denotation(Person))
denotation(Mike) = mike
telephone(mike) = telephone(mary)
knows(pat, Telephone(Mike))
¬knows(pat, Telephone(Mary)).

(12.1)

Making the distinction between concepts and their denotation allows us to
say that Pat knows Mike’s telephone number but doesn’t know Mary’s tele-
phone number even though Mary’s telephone number is the same as Mike’s
telephone number. (McCarthy 1979c) uses capitalized words for concepts
and lower case for objects. This is contrary to the convention in the rest of
this paper that capitalizes constants and uses lower case for variables.

We will give tentative formulas for some of the results of observations. In
this we take advantage of the ideas of (McCarthy 1993) and (McCarthy and Buvač 1998)
and give a context for each formula. This makes the formulas shorter. What
Here, Now and I mean is determined in an outer context.

• Observing its physical body, recognizing the positions of its effectors,
noticing the relation of its body to the environment and noticing the
values of important internal variables, e.g. the state of its power supply
and of its communication channels. Already a notebook computer is
aware of the state of its battery.

. . . : C(Here,Now, I) : Lowbattery∧In(Screwdriver,Hand3)(12.2)

[No reason why the robot shouldn’t have three hands.]

• Observing that it does or doesn’t know the value of a certain term,
e.g. observing whether it knows the telephone number of a certain
person. Observing that it does know the number or that it can get it
by some procedure is likely to be straightforward. However, observing
that it doesn’t know the telephone number and cannot infer what it is
involves getting around Gödel’s second incompleteness theorem. The
reason we have to get around it is that showing that any sentence is
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not inferrable says that the theory is consistent, because if the theory
is inconsistent, all sentences are inferrable. Section 12.5 shows how do
this using Gödel’s idea of relative consistency. Consider

C(Now, I) : ¬Know(Telephone(Clinton)) (12.3)

and

C(Now, I) : ¬Know-whether(Sitting(Clinton)). (12.4)

Here, as discussed in (McCarthy 1979c), Telephone(Clinton) stands
for the concept of Clinton’s telephone number, and Sitting(Clinton) is
the proposition that Clinton is sitting.

Deciding that it doesn’t know and cannot infer the value of a telephone
number is what should motivate the robot to look in the phone book
or ask someone.

• The robot needs more than just the ability to observe that it doesn’t
know whether a particular sentence is true. It needs to be able to ob-
serve that it doesn’t know anything about a certain subject, i.e. that
anything about the subject is possible. Thus it needs to be able to say
that the members of Clinton’s cabinet may be in an arbitrary configu-
ration of sitting and standing. This is discussed in Section 12.5.1.

• Reasoning about its abilities. “I think I can figure out how to do this”.
“I don’t know how to do that.”

• Keeping a journal of physical and intellectual events so it can refer to
its past beliefs, observations and actions.

• Observing its goal structure and forming sentences about it. Notice
that merely having a stack of subgoals doesn’t achieve this unless the
stack is observable and not merely obeyable. This lets it notice when
a subgoal has become irrelevant to a larger goal and then abandon it.

• The robot may intend to perform a certain action. It may later infer
that certain possibilities are irrelevant in view of its intentions. This
requires the ability to observe intentions.
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• It may also be able to say, “I can tell you how I solved that problem”
in a way that takes into account its mental search processes and not
just its external actions.

• The obverse of a goal is a constraint. Maybe we will want something
like Asimov’s science fiction laws of robotics, e.g. that a robot should
not harm humans. In a sufficiently general way of looking at goals,
achieving its other goals with the constraint of not harming humans is
just an elaboration of the goal itself. However, since the same constraint
will apply to the achievement of many goals, it is likely to be convenient
to formalize them as a separate structure. A constraint can be used to
reduce the space of achievable states before the details of the goals are
considered.

• Observing how it arrived at its current beliefs. Most of the important
beliefs of the system will have been obtained by nonmonotonic reason-
ing, and therefore are usually uncertain. It will need to maintain a
critical view of these beliefs, i.e. believe meta-sentences about them
that will aid in revising them when new information warrants doing
so. It will presumably be useful to maintain a pedigree for each be-
lief of the system so that it can be revised if its logical ancestors are
revised. Reason maintenance systems maintain the pedigrees but not
in the form of sentences that can be used in reasoning. Neither do
they have introspective subroutines that can observe the pedigrees and
generate sentences about them.

• Not only pedigrees of beliefs but other auxiliary information should
either be represented as sentences or be observable in such a way as
to give rise to sentences. Thus a system should be able to answer the
questions: “Why do I believe p?” or alternatively “Why don’t I believe
p?”.

• Regarding its entire mental state up to the present as an object, i.e. a
context. (McCarthy 1993) discusses contexts as formal objects. The
ability to transcend one’s present context and think about it as an
object is an important form of introspection. The restriction to up to
the present avoids the paradoxes of self-reference and still preserves the
useful generality.
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• Knowing what goals it can currently achieve and what its choices are
for action. (McCarthy and Hayes 1969b) showed how a robot could
think about its own “free will” by considering the effects of the actions
it might take, not taking into account its own internal processes that
decide on which action to take.

• A simple (and basic) form of free will is illustrated in the situation
calculus formula that asserts that John will do the action that John
thinks results in the better situation for him.

Occurs(Does(John,
if

Thinks-better(John,Result(Does(John, a1), s), Result(Does(John, a2), s))
then a1
else a2

), s).

(12.5)

Here Thinks-better(John, s1, s2) is to be understood as asserting that
John thinks s1 is better for him than s2.

• Besides specific information about its mental state, a robot will need
general facts about mental processes, so it can plan its intellectual life.

• There often will be auxiliary goals, e.g. curiosity. When a robot is not
otherwise occupied, we will want it to work at extending its knowledge.

• Probably we can design robots to keep their goals in a proper hierarchy
so that they won’t ever have to say, “I wish I didn’t want to smoke.”

The above are only some of the needed forms of self-consciousness. Re-
search is needed to determine their properties and to find additional useful
forms of self-consciousness.

12.2.3 Understanding and Awareness

We do not offer definitions of understanding and awareness. Instead we
discuss which abilities related to these phenomena robots will require.

Consider fish swimming. Fish do not understand swimming in the fol-
lowing senses.



12.3. FORMALIZED SELF-KNOWLEDGE 165

• A fish cannot, while not swimming, review its previous swimming per-
formance so as to swim better next time.

• A fish cannot take instruction from a more experienced fish in how to
swim better.

• A fish cannot contemplate designing a fish better adapted to certain
swimming conditions than it is.

A human swimmer may understand more or less about swimming. 3

We contend that intelligent robots will need understanding of how they
do things in order to improve their behavior in ways that fish cannot. Aaron
Sloman (?) has also discussed understanding, making the point that under-
standing is not an all-or-nothing quality.

Consider a robot that swims. Besides having a program for swimming
with which it can interact, a logic-based robot needs to use sentences about
swimming in order to give instructions to the program and to improve it.
This includes sentences about how fast or how long it can swim.

The understanding a logical robot needs then requires it to use appro-
priate sentences about the matter being understood. The understanding
involves both getting the sentences from observation and inference and using
them appropriately to decide what to do.

Awareness is similar. It is a process whereby appropriate sentences about
the world and its own mental situation come into the robot’s consciousness,
usually without intentional actions. Both understanding and awareness may
be present to varying degrees in natural and artificial systems. The swimming
robot may understand some facts about swimming and not others, and it may
be aware of some aspects of its current swimming state and not others.

12.3 Formalized Self-Knowledge

We assume a system in which a robot maintains its information about the
world and itself primarily as a collection of sentences in a mathematical
logical language. There will be other data structures where they are more

3One can understand aspects of a human activity better than the people who are good
at doing it. Nadia Comenici’s gymnastics coach was a large, portly man hard to imagine
cavorting on a gymnastics bar. Nevertheless, he understood women’s gymnastics well
enough to have coached a world champion.
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compact or computationally easier to process, but they will be used by pro-
grams whose results become stored as sentences. The robot decides what
to do by logical reasoning, by deduction using rules of inference and also by
nonmonotonic reasoning.

We do not attempt a full formalization of the rules that determine the
effects of mental actions and other events in this paper. The main reason
is that we are revising our theory of events to handle concurrent events in
a more modular way. This is discussed in the draft (McCarthy 1995b) and
further in (McCarthy and Costello 1998).

Robot consciousness involves including among its sentences some about
the robot itself and about subsets of the collection of sentences itself, e.g.
the sentences that were in consciousness just previous to the introspection,
or at some previous time, or the sentences about a particular subject. 4

We say subsets in order to avoid self-reference as much as possible. Refer-
ences to the totality of the robot’s beliefs can usually be replaced by references
to the totality of its beliefs up to the present moment.

12.3.1 Mental Situation Calculus

The situation calculus, initiated in (McCarthy 1963) and (McCarthy and Hayes 1969a),
is often used for describing how actions and other events affect the world. It
is convenient to regard a robot’s state of mind as a component of the situa-
tion and describe how mental events give rise to new situations. (We could
use a formalism with a separate mental situation affected only by mental
events, but this doesn’t seem to be advantageous.) We contemplate a system
in which what holds is closed under deductive inference, but knowledge is
not.

The relevant notations are:

• Holds(p, s) is the assertion that the proposition p holds in the situation
s. We shall mainly be interested in propositions p of a mental nature.

4Too much work concerned with self-knowledge has considered self-referential sentences
and getting around their apparent paradoxes. This is mostly a distraction for AI, because
human self-consciousness and the self-consciousness we need to build into robots almost
never involves self-referential sentences or other self-referential linguistic constructions. A
simple reference to oneself is not a self-referential linguistic construction, because it isn’t
done by a sentence that refers to itself.
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• Among the propositions that can hold are Know(p) and Believe(p),
where p again denotes a proposition. Thus we can have

Holds(Know(p), s). (12.6)

• As we will shortly see, sentences like

Holds(Know(Not Know(p), s) (12.7)

are often useful. The sentence(12.7) asserts that the robot knows it
doesn’t know p.

• Besides knowledge of propositions we need a notation for knowledge
of an individual concept, e.g. a telephone number. (McCarthy 1979c)
treats this in some detail. That paper has separate names for objects
and concepts of objects and the argument of knowing is the latter.
The symbol mike denotes Mike himself, the function telephone takes
a person into his telephone number. Thus telephone(mike) denotes
Mike’s telephone number. The symbol Mike is the concept of Mike,
and the function Telephone takes a the concept of a person into the
concept of his telephone number. Thus we distinguish between Mike’s
telephone number, denoted by telephone(mike) and the concept of his
telephone number denoted by Telephone(Mike).

The convention used in this section of telephone and Telephone is
different from the convention in the rest of the article of using capital
letters to begin constants (whether individual, functional or predicate
constants) and using symbols in lower case letters to denote variables.

This enables us to say

Holds(Knows(Telephone(Mike)), s) (12.8)

to assert knowledge of Mike’s telephone number and

Holds(Know(Not(Knows(Telephone(Mike)))), s) (12.9)

to mean that the robot knows it doesn’t know Mike’s telephone num-
ber. The notation is somewhat ponderous, but it avoids the unwanted
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inference that the robot knows Mary’s telephone number from the facts
that her telephone number is the same as Mike’s and that the robot
knows Mike’s telephone number.5 Having the sentence (12.9) in con-
sciousness might stimulate the robot to look in the phone book.

12.3.2 Mental events, especially mental actions

Mental events change the situation just as do physical events.
Here is a list of some mental events, mostly described informally.

• In the simplest formalisms mental events occur sequentially. This corre-
sponds ot a stream of consciousness. Whether or not the idea describes
human consciousness, it is a design option for robot consciousness.

• Learn(p). The robot learns the fact p. An obvious consequence is

Holds(Know(p), Result(Learn(p), s)) (12.10)

provided the effects are definite enough to justify the Result formalism.
More likely we’ll want something like

Occurs(Learn(p), s) → Holds(F Know(p), s), (12.11)

where Occurs(event, s) is a point fluent asserting that event occurs (in-
stantaneously) in situation s. F (p) is the proposition that the propo-
sition p will be true at some time in the future. The temporal function
F is used in conjunction with the function next and the axiom

Holds(F (p), s) → Holds(p,Next(p, s)). (12.12)

Here Next(p, s) denotes the next situation following s in which p holds.
(12.12) asserts that if F (p) holds in s, then there is a next situation
in which p holds. (This Next is not the Next operator used in some
temporal logic formalisms.)

5Some other formalisms give up the law of substitution in logic in order to avoid this
difficulty. We find the price of having separate terms for concepts worth paying in order
to retain all the resources of first order logic and even higher order logic when needed.
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• The robot learning p has an effect on the rest of its knowledge. We are
not yet ready to propose one of the many belief revision systems for
this. Indeed we don’t assume logical closure.

• What about an event Forget(p)? Forgetting p is definitely not an event
with a definite result. What we can say is

Occurs(Forget(p), s) → Holds(F (Not(Know(p))), s) (12.13)

In general, we shall want to treat forgetting as a side-effect of some
more complex event. Suppose Foo is the more complex event. We’ll
have

Occurs(foo, s) → Occurs(Forget(p), s) (12.14)

• The robot may decide to do action a. This has the property:

Occurs(Decide-to-do a, s) → Holds(Intend-to-do a, s). (12.15)

The distinction is that Decide is an event, and we often don’t need to
reason about how long it takes. Intend-to-do is a fluent that persists
until something changes it. Some call these point fluents and continuous
fluents respectively.

• The robot may decide to assume p, e.g. for the sake of argument.
The effect of this action is not exactly to believe p, but rather involves
entering a context Assume(c, p) in which p holds. This formalism is
described in (McCarthy 1993) and (McCarthy and Buvač 1998).

• The robot may infer p from other sentences, either by deduction or by
some nonmonotonic form of inference.

• The robot may see some object. One result of seeing an object may be
knowing that it saw the object. So we might have

Occurs(See o, s) → Holds(F Knows Did See o, s). (12.16)

Formalizing other effects of seeing an object require a theory of seeing
that is beyond the scope of this article.
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It should be obvious to the reader that we are far from having a compre-
hensive list of the effects of mental events. However, I hope it is also apparent
that the effects of a great variety of mental events on the mental part of a
situation can be formalized. Moreover, it should be clear that useful robots
will need to observe mental events and reason with facts about their effects.

Most work in logical AI has involve theories in which it can be shown
that a sequence of actions will achieve a goal. There are recent extensions to
concurrent action, continuous action and strategies of action. All this work
applies to mental actions as well.

Mostly outside this work is reasoning leading to the conclusion that a
goal cannot be achieved. Similar reasoning is involved in showing that ac-
tions are safe in the sense that a certain catastrophe cannot occur. Deriving
both kinds of conclusion involves inductively inferring quantified proposi-
tions, e.g. “whatever I do the goal won’t be achieved” or “whatever happens
the catastrophe will be avoided.” This is hard for today’s automated rea-
soning techniques, but Reiter (?) and his colleagues have made important
progress.

12.4 Logical paradoxes, Gödel’s theorems, and

self-confidence

You can’t always get what you want,
But if you try, sometimes, you just might find,

You get what you need.
— Rolling Stones

Logical discoveries, mainly of the 20th century, impose limitations on the
formalisms we can used without paradox. Other discoveries place limitations
on what can be computed. In essence, the limitations apply to both people
and machines, and intelligence can live within the limitations.

12.4.1 The paradoxes

It has precursors, but Russell’s paradox of 1901 shows that the obvious set
theory, as proposed by Frege has to be modified in unpleasant ways. Frege’s
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basic idea is to let us define the set of all objects having a given property, in
more modern notation

{x|P(x)},

giving the set of all x with the property P . Thus the set of all red dogs is
denoted by {x|dog(x)∧ red(x)}, or if the set of dogs is denoted dogs and the
set of red objects as reds, we can also write {x|x ∈ dogs ∧ x ∈ reds}. This
notation for forming sets is very convenient and is much used in mathematics.
The principle is called comprehension.

Bertrand Russell in his 1901 letter to Gottlob Frege pointed out that
forming the set

rp = {x|¬(x ∈ x)},

i.e. the set of all sets that are not members of themselves, leads promptly to
a contradiction. We get rp ∈ rp ≡ ¬rp ∈ rp.

There are many ways of restricting set theory to avoid the contradiction.
The most commonly chosen is that of Zermelo, whose set theory Z allowed
only writing {x ∈ A|P(x)}, where A is a previously defined set. This turned
out to be not quite enough to represent mathematics and Fraenkel introduce
a further axiom schema of replacement giving a system now called ZF.

ZF is less convenient than Frege’s inconsistent system because of the need
to find the set A, and the unrestricted comprehension schema is often used
when it is clear that the needed A could be found. 6

A more direct inconvenience for giving robots consciousness is the para-
dox discovered by Richard Montague (Montague 1963) concerning a set of
desirable axioms for knowledge of sentences.

We might denote by knows(person, sentence) the assertion that person
knows sentence and consider this as holding at some time t in in some sit-
uation s. However, Montague’s paradox arises even when there is only one
knower, and we write Kp for the knower knowing the sentence p. Montague’s
paradoxes arise under the assumption that the language of the sentences p is
rich enough for “elementary syntax”, i.e. allows quantifiers and operations
on sentences or on Gödel numbers standing for sentences.

6For AI it might be convenient to use unrestricted comprehension as a default, with the
default to the limited later by finding an A if necessary. This idea has not been explored
yet.
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The axioms are

Kp → p, (12.17)

Kp → KKp, (12.18)

and

K(Kp ∧ K(p → q) → Kq). (12.19)

Intuitively these axioms state that if you know something, it’s true, if
you know something, you know you know it, and you can do modus ponens.
Added to this are schemas saying that you know some sentences of elementary
logic.

From these, Montague constructed a version of the paradox of the liar.
Hence they must be weakened, and there are many weakenings that restore
consistency. Montague preferred to leave out elementary syntax, thus getting
a form of modal logic.

I think it might be better to weaken (12.18) by introducing a hierarchy
of introspective knowledge operators on the idea that knowing that you know
something is knowledge at an introspective level.

Suppose that we regard knowledge as a function of time or of the situation.
We can slither out of Montague’s paradox by changing the axiom Kp → KKp
to say that if you knew something in the past, you now know that you knew
it. This spoils Montague’s recursive construction of the paradox.

None of this has yet been worked out for an AI system.

12.4.2 The incompleteness theorems

Gödel’s first incompleteness theorem shows that any consistent logical theory
expressive enough for elementary arithmetic, i.e. with addition, multiplica-
tion and quantifiers could express true sentences unprovable in the theory.

Gödel’s second incompleteness theorem tells that the consistency of the
system is one of these unprovable sentences.

The basis of Gödel’s proof was the fact that the syntactic computations
involved in combining formulas and verifying that a sequence of formulas is
a proof can be imitated by arithmetic computations on “Gödel numbers” of
formulas. If we have axioms for symbolic computations, e.g. for Lisp compu-
tations, then the proofs of Gödel’s theorems become much shorter. Shankar
(Shankar 1986) has demonstrated this using the Boyer-Moore prover.
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Among the unprovable true sentences is the statement of the theory’s
own consistency. We can interpret this as saying that the theory lacks self-
confidence. Turing, in his PhD thesis, studied what happens if we add to
a theory T the statement consis(T ) asserting that T is consistent, getting
a stronger theory T ′. While the new theory has consis(T ) as a theorem, it
doesn’t have consis(T ′) as a theorem—provided it is consistent. The process
can be iterated, and the union of all these theories is consisω(T ). Indeed the
process can again be iterated, as Turing showed, to any constructive ordinal
number.

12.4.3 Iterated self-confidence

Gödel’s second incompleteness theorem (?) tells us that a consistent logical
theory T0 strong enough to do Peano arithmetic cannot admit a proof of its
own consistency. However, if we believe the theory T0, we will believe that
it is consistent. We can add the statement consis(T0) asserting that T0 is
consistent to T0 getting a stronger theory T1. By the incompleteness theo-
rem, T1 cannot admit a proof of consis(T1), and so on. Adding consistency
statement for what we already believe is a self–confidence prinicple.

Alan Turing (?) studied iterated statements of consistency, pointing out
that we can continue the iteration of self-confidence to form Tω, which asserts
that all the Tn are consistent. Moreover, the iteration can be continued
through the recursive ordinal numbers. Solomon Feferman (Feferman 1962)
studied a more powerful iteration principle than Turing’s called transfinite
progressions of theories.

There is no single computable iterative self-confidence process that gets
everything. If there were, we could put it in a single logical system, and
Gödel’s theorem would apply to it.

For AI purposes, T1, which is equivalent to induction up to the ordinal
ε0 may suffice.

The relevance to AI of Feferman’s transfinite progressions is at least to
refute naive arguments based on the incompleteness theorem that AI is im-
possible.

A robot thinking about self-confidence principles is performing a kind of
introspection. For this it needs not only the iterates of T0 but to be able to
think about theories in general, i.e. to use a formalism with variables ranging
over theories.
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12.4.4 Relative consistency

When we cannot prove a theory consistent, we can often show that it is con-
sistent provided some other theory, e.g. Peano arithmetic or ZF is consistent.

In his (?), Gödel proved that if Gödel-Bernays set theory is consistent,
then it remains consistent when the axiom of choice and the continuum hy-
pothesis are added to the axioms. He did this by supposing that set theory
has a model, i.e. there is a domain and an ∈ predicate satisfying GB. He then
showed that a subset of this domain, the constructible sets, provided a model
of set theory in which the axiom of choice and the continuum hypothesis are
also true. Paul Cohen proved in 1963 that if set theory has any models it
has models in which the axiom of choice and the continuum hypothesis are
false.

12.5 Inferring Non-knowledge

[This section and the next have a lot of redundancy. This will be fixed.]
Let p be a proposition. The proposition that the robot does not know p

will be written Not Know(p), and we are interested in those mental situations
s in which we have Holds(Not Know(p), s). If Not p is consistent with the
robot’s knowledge, then we certainly want Holds(Not Know(p), s).

How can we assert that the proposition not p is consistent with the robot’s
knowledge? Gödel’s theorem tells us that we aren’t going to do it by a
formal proof using the robot’s knowledge as axioms. 7 The most perfunctory
approach is for a program to try to prove Holds(not p, s) from the robot’s
knowledge and fail. Logic programming with negation as failure does this
for Horn theories.

However, we can often do better. If a person or a robot regards a certain
collection of facts as all that are relevant, it suffices to find a model of these
facts in which p is false. 8

7We assume that our axioms are strong enough to do symbolic computation which
requires the same strength as arithmetic. I think we won’t get much joy from weaker
systems.

8A conviction of about what is relevant is responsible for a person’s initial reaction
to the well-known puzzle of the three activists and the bear. Three Greenpeace activists
have just won a battle to protect the bears’ prey, the bears being already protected. It
was hard work, and they decide to go see the bears whose representatives they consider
themselves to have been. They wander about with their cameras, each going his own way.
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Consider asserting ignorance of the value of a numerical parameter. The
simplest thing is to say that there are at least two values it could have, and
therefore the robot doesn’t know what it is. However, we often want more,
e.g. to assert that the robot knows nothing of its value. Then we must assert
that the parameter could have any value, i.e. for each possible value there are
models of the relevant facts in which it has that value. Of course, complete
ignorance of the values of two parameters requires that there be a model in
which each pair of values is taken.

It is likely to be convenient in constructing these models to assume that
arithmetic is consistent, i.e. that there are models of arithmetic. Then the
set of natural numbers, or equivalently Lisp S-expressions, can be used to
construct the desired models. The larger the robot’s collection of theories
postulated to have models, the easier it will be to show ignorance.

Making a program that reasons about models of its knowledge looks dif-
ficult, although it may turn out to be necessary in the long run. The notion
of transcending a context may be suitable for this.

For now it seems more straightforward to use second order logic. The idea
is to write the axioms of the theory with predicate and function variables
and to use existential statements to assert the existence of models. Here’s a
proposal.

Suppose the robot has some knowledge expressed as an axiomatic theory
and it needs to infer that it cannot infer that President Clinton is sitting
down. We immediately have a problem with Gödel’s incompleteness theorem,
because if the theory is inconsistent, then every sentence is inferrable, and
therefore a proof of non-inferrability of any sentence implies consistency. We
get around this by using another idea of Gödel’s—relative consistency.9

For example, suppose we have a first order theory with predicate symbols
{P1, . . . , Pn, Sits} and let A(P1, . . . , Pn, Sits) be an axiom for the theory.

Meanwhile a bear wakes up from a long sleep very hungry and heads South. After three
miles, she comes across one of the activists and eats him. She then goes three miles West,
finds another activist and eats her. Three miles North she finds a third activist but is too
full to eat. However, annoyed by the incessant blather, she kills the remaining activist and
drags him two miles East to her starting point for a nap, certain that she and her cubs
can have a snack when she wakes.

What color was the bear?
At first sight it seems that the color of the bear cannot be determined from the informa-

tion given. While wrong in this case, jumping to such conclusions about what is relevant
is more often than not the correct thing to do.

9Our approach is a variant of that used by (Kraus et al. 1991).
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The second order sentence

(∃P ′

1
, . . . , P ′

n sits′)A(P ′

1
, . . . , P ′

n, sits′) (12.20)

expresses the consistency of the theory, and the sentence

(∃P ′

1
, . . . , P ′

n sits′)(A(P ′

1
, . . . , P ′

n, sits′) ∧ ¬sits′(Clinton, s)) (12.21)

expresses the consistency of the theory with the added assertion that Clinton
is not sitting in the situation s. [In the above, we use upper case of the
predicate constant Sits and lower case for the variable sits′.

Then

(12.20) → (12.21) (12.22)

is then the required assertion of relative consistency.
Sometimes we will want to assert relative consistency under fixed inter-

pretations of some of the predicate symbols. This would be important when
we have axioms involving these predicates but do not have formulas for them,
e.g. of the form (∀x y)(P (x, y) ≡ . . .). Suppose, for example, that there are
three predicate symbols (P1, P2, Sits), and P1 has a fixed interpretation, and
the other two are to be chosen so as to satisfy the axiom. Then the assertion
of consistency with Clinton sitting takes the form

(∃P ′

2
P ′

3
)A(P1, P

′

2
, sits′) ∧ sits′(Clinton, s). (12.23)

The straightforward way of proving (12.23) is to find substitutions for the
predicate variables P ′

2
and sits′ that make the matrix of (12.23) true. The

most trivial case of this would be when the axiom A(P1, P2, Sits) does not
actually involve the predicate Sits, and we already have an interpretation
P1, . . . , Pn, Sits in which it is satisfied. Then we can define

sits′ = (λx ss)(¬(x = Clinton ∧ ss = s) ∨ Sits(x, ss))), (12.24)

and (12.23) follows immediately. This just means that if the new predicate
does not interact with what is already known, then the values for which it is
true can be assigned arbitrarily.
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12.5.1 Existence of parameterized sets of models

Relative consistency provides a reasonable way of handling single cases of
non-knowledge. However, we may want more. For example, suppose we
want to say that we know nothing about whether any member of Clinton’s
cabinet is standing or sitting except (for example) that none of them sits
when Clinton is standing in the same room.

The theory should then have lots of models, and we can parameterize
them by a set of the standees that is arbitary except for the above condition.
Here’s a formula using non-knowledge.

(∀f)(f ∈ {t, f}Clinton-cabinet

→ (∀x)(x ∈ Clinton-cabinet
→ ¬Know(Sits(x) ≡ f(x) = t)))

(12.25)

but this only tells us that for each member of the cabinet, we don’t know
whether he is sitting.

We want the stronger formula

(∀f)(f ∈ {t, f}Clinton-cabinet

¬Know(¬(∀x)(x ∈ Clinton-cabinet
Sits(x) ≡ f(x) = t)))

(12.26)

which asserts that for all we know, Clinton’s cabinet could be standing or
sitting in an arbitrary pattern. Here we have had to take a quantifier inside
the Know function. (McCarthy 1979c) discusses difficulties in formalizing
this and doesn’t offer a satisfactory solution.

(?) gives a simple way of parameterizing the set of models of a proposi-
tional sentence. However, there can be no neat way of parameterizing the
models of an arbitary first order theory. Thus parameterizing the set of ax-
ioms for group theory would amount to parameterizing the set of all groups,
and group theory tells us that there is no straightforward parameterization.

12.5.2 Non-knowledge as failure

A system based on Horn clauses, e.g. a Prolog program, may treat non-
knowledged as failure. Thus if both an attempt to prove Clinton to be
sitting and an attempt to prove him standing fail, the system can infer that
it doesn’t know whether he is sitting or standing. This is likely to be easier
than establishing that it is possible that he is standing and possible that he
is sitting by finding models.
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12.6 Humans and Robots

Human consciousness is undoubtedly more complicated than the design we
propose for robots, but it isn’t necessarily better.

The main complication I see is that human self observation, like human
vision, is spotty. I pursue the analogy, because much more is accssible to
observation and experiment with vision than with self observation.

Subjectively a person feels that he has a visual field with everything in
the field accessible with approximately equal resolution. We also feel that
colors are associated with points in the visual field. In fact, a person has a
blind spot, resolution is much better in the small fovea than elsewhere, the
perceived color of an object in the field has no simple relation to the light
striking a corresponding point on the retina.

All this is because nature has evolved a vision system that finds out as
much as possible about the world with very limited apparatus. For example,
the usual objects have colors that can be recognized under varied lighting
conditions as being the same color.

We have much less ability to observe human consciousness. However, it
would be too good to be true if it consisted of a definite set of observable
sentences.

12.6.1 A conjecture about human consciousness and
its consequences for robots

There is a large difference between the human mind and the ape mind, and
human intelligence evolved from ape-like intelligence in a short time as evo-
lution goes. Our conjecture is that besides the larger brain, there is one qual-
itative difference—consciousness. The evolutionary step consisted of making
more of the brain state itself observable than was possible for our ape-like
ancestors. The consequence was that we could learn procedures that take
into account the state of the brain, e.g. previous observations, knowledge or
lack of it, etc.

The consequence for AI is that maybe introspection can be introduced
into problem solving in a rather simple way—letting actions depend on the
state of the mind and not just on the state of the external world as revealed
by observation.

This suggests designing logical robots with observation as a subconscious
process, i.e. mainly taking place in the background rather than as a result
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of decisions. Observation results in sentences in consciousness. Deliberate
observations should also be possible. The mental state would then be one
aspect of the world that is subconsciously observed.

We propose to use contexts as formal objects for robot context, whereas
context is mainly subconscious in humans. Perhaps robots should also deal
with contexts at least partly subconsciously. I’d bet against it now.

[Much more to come when I get it clear.]
2002 July: It’s still not sufficiently clear.

12.6.2 Robots Should Not be Equipped with Human-
like Emotions

Human emotional and motivational structure is likely to be much farther
from what we want to design than is human consciousness from robot con-
sciousness.10

Some authors, (?), have argued that sufficiently intelligent robots would
automatically have emotions somewhat like those of humans. However, I
think that it would be possible to make robots with human-like emotions,
but it would require a special effort distinct from that required to make
intelligent robots. In order to make this argument, it is necessary to assume
something, as little as possible, about human emotions. Here are some points.

1. Human reasoning operates primarily on the collection of ideas of which
the person is immediately conscious.

2. Other ideas are in the background and come into consciousness by
various processes.

3. Because reasoning is so often nonmonotonic, conclusions can be reached
on the basis of the ideas in consciousness that would not be reached if
certain additional ideas were also in consciousness. 11

10Cindy Mason in her Emotional Machines home page
(http://www.emotionalmachines.com/) expresses a different point of view.

11These conclusions are true in the simplest or most standard or otherwise minimal
models of the ideas taken in consciousness. The point about nonmonotonicity is absolutely
critical to understanding these ideas about emotion. See, for example, (McCarthy 1980)
and (McCarthy 1986)



180 CHAPTER 12. CONSCIOUSNESS IN AI SYSTEMS

4. Human emotions influence human thought by influencing what ideas
come into consciousness. For example, anger brings into consciousness
ideas about the target of anger and also about ways of attacking this
target.

5. According to these notions, paranoia, schizophrenia, depression and
other mental illnesses would involve malfunctions of the chemical mech-
anisms that gate ideas into consciousness. A paranoid who believes the
CIA is following him and influencing him with radio waves can lose
these ideas when he takes his medicine and regain them when he stops.
Certainly his blood chemistry cannot encode complicated paranoid the-
ories, but they can bring ideas about threats from wherever or however
they are stored.

6. Hormones analogous to neurostransmitters open synaptic gates to ad-
mit whole classes of beliefs into consciousness. They are analogs of
similar substances and gates in animals.

7. A design that uses environmental or internal stimuli to bring whole
classes of ideas into consciousness is entirely appropriate for a lower
animals. We inherit this mechanism from our animal ancestors.

8. Building the analog of a chemically influenced gating mechanism would
require a special effort.

These facts suggest the following design considerations.

1. We don’t want robots to bring ideas into consciousness in an uncon-
trolled way. Robots that are to react against people (say) considered
harmful, should include such reactions in their goal structures and pri-
oritize them together with other goals. Indeed we humans advise our-
selves to react rationally to danger, insult and injury. “Panic” is our
name for reacting directly to perceptions of danger rather than ratio-
nally.

2. Putting such a mechanism, e.g. panic, in a robot is certainly feasible.
It could be done by maintaining some numerical variables, e.g. level of
fear, in the system and making the mechanism that brings sentences
into consciousness (short term memory) depend on these variables.
However, such human-like emotional structures are not an automatic
byproduct of human-level intelligence.
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3. Another aspect of the human mind that we shouldn’t build into robots
is that subgoals, e.g. ideas of good and bad learned to please par-
ents, can become independent of the larger goal that motivated them.
Robots should not let subgoals come to dominate the larger goals that
gave rise to them.

4. It is also practically important to avoid making robots that are reason-
able targets for either human sympathy or dislike. If robots are visibly
sad, bored or angry, humans, starting with children, will react to them
as persons. Then they would very likely come to occupy some status
in human society. Human society is complicated enough already.

12

12.7 Remarks

1. In (?), Thomas Nagel wrote “Perhaps anything complex enough to be-
have like a person would have experiences. But that, if true, is a fact
that cannot be discovered merely by analyzing the concept of experi-
ence.”. This article supports Nagel’s conjecture, both in showing that
complex behavior requires something like conscious experience, and in
that discovering it requires more than analyzing the concept of experi-
ence.

2. Already (?) disposes of “the claim that a machine cannot be the subject
of its own thought”. Turing further remarks

By observing the results of its own behavior it can modify its
own programs so as to achieve some purpose more effectively.
These are possibilities of the near future rather than Utopian
dreams.

122001: The Steven Spielberg movie, Artificial Intelligence illustrates dangers of making
robots that partly imitate humans and inserting them into society. I say “illustrates”
rather “than provides evidence for”, because a movie can illustrate any proposition the
makers want, unrestricted by science or human psychology. In the movie, a robot boy is
created to replace a lost child. However, the robot does not grow and is immortal and
therefore cannot fit into a human family, although they depict it as programmed to love
the bereaved mother. It has additional gratuitous differences from humans.

The movie also illustrates Spielberg’s doctrines about environmental disaster and human
prejudice against those who are different.
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We want more than than Turing explicitly asked for. The machine
should oberve its processes in action and not just the results.

3. The preceding sections are not to be taken as a theory of human con-
sciousness. We do not claim that the human brain uses sentences as
its primary way of representing information.

Of course, logical AI involves using actual sentences in the memory of
the machine.

4. Daniel Dennett (?) argues that human consciousness is not a single
place in the brain with every conscious idea appearing there. I think
he is partly right about the human brain, but I think a unitary con-
sciousness will work quite well for robots. It would likely also work
for humans, but evolution happens to have produced a brain with dis-
tributed consciousness.

5. John H. Flavell, (?) and (?), and his colleagues describe experiments
concerning the introspective abilities of people ranging from 3 years
old to adulthood. Even 3 year olds have some limited introspective
abilities, and the ability to report on their own thoughts and infer the
thoughts of others grows with age. Flavell, et. al. reference other work
in this area. This is apparently a newly respectable area of experimental
psychology, since the earliest references are from the late 1980s.

6. Francis Crick (?) discusses how to find neurological correlates of con-
sciousness in the human and animal brain. I agree with all the phi-
losophy in his paper and wish success to him and others using neuro-
science. However, after reading his book, I think the logical artificial
intelligence approach has a good chance of achieving human-level in-
telligence sooner. They won’t tell as much about human intelligence,
however.

7. What about the unconscious? Do we need it for robots? Very likely
we will need some intermediate computational processes whose results
are not appropriately included in the set of sentences we take as the
consciousness of the robot. However, they should be observable when
this is useful, i.e. sentences giving facts about these processes and their
results should appear in consciousness as a result of mental actions
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aimed at observing them. There is no need for a full-fledged Freudian
unconscious with purposes of its own.

8. Should a robot hope? In what sense might it hope? How close would
this be to human hope? It seems that the answer is yes and quite
similar.. If it hopes for various things, and enough of the hopes come
true, then the robot can conclude that it is doing well, and its higher
level strategy is ok. If its hopes are always disappointed, then it needs
to change its higher level strategy.

To use hopes in this way requires the self observation to remember
what it hoped for.

Sometimes a robot must also infer that other robots or people hope or
did hope for certain things.

9. The syntactic form is simple enough. If p is a proposition, then Hope(p)
is the proposition that the robot hopes for p to become true. In mental
situation calculus we would write

Holds(Hope(p), s) (12.27)

to assert that in mental situation s, the robot hopes for p.

Human hopes have certain qualities that I can’t decide whether we will
want. Hope automatically brings into consciousness thoughts related
to what a situation realizing the hope would be like. We could design
our programs to do the same, but this is more automatic in the human
case than might be optimal. Wishful thinking is a well-known human
malfunction.

10. A robot should be able to wish that it had acted differently from the
way it has done. A mental example is that the robot may have taken
too long to solve a problem and might wish that it had thought of the
solution immediately. This will cause it to think about how it might
solve such problems in the future with less computation.

11. A human can wish that his motivations and goals were different from
what he observes them to be. It would seem that a program with such
a wish could just change its goals. However, it may not be so simple if
different subgoals each gives rise to wishes, e.g. that the other subgoals
were different.
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12. Programs that represent information by sentences but generate new
sentences by processes that don’t correspond to logical reasoning present
similar problems to logical AI for introspection. Approaches to AI that
don’t use sentences at all need some other way of representing the re-
sults of introspection if they are to use it at all.

13. Psychologists and philosophers from Aristotle on have appealed to as-
sociation as the main tool of thought. It is clearly inadequate to draw
conclusions. We can make sense of their ideas by regarding association
as the main tool for bringing facts into consciousness, but requiring
reasoning to reach conclusions.

14. Some conclusions are reached by deduction, some by nonmonotonic
reasoning and some by looking for models—alternatively by reasoning
in second order logic.

15. Case based reasoning. Cases are relatively rich objects—or maybe we
should say locally rich.
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Chapter 13

PROBLEM SOLVING

Acting intelligently involves problem solving, i.e. finding an x such that
P (x). We can generalize this to finding x1, . . . , xn such that P (x1, . . . , xn),
but this can be considered only superficially more general, because a single
x can be a compound object.

We can formalize this a bit more by writing Find(x, P (x)) as the name
of a problem. (or Find(x1, . . . , xn, P (x1, . . . , xn))) as the name of a problem-
solving task.

13.0.1 Prolog and logic programming

Logic programming is the most straightforward form of problem solving.

13.1 Heuristics

When a computer executes a billion instructions to obtain a result a human
gets in five minutes, the reason is not that the presumed parallelism of human
wetware trumps the integrated circuits. The fault is not with the machine
designers but with the programmers.

We don’t have a proof of this contention, and it is certainly disputed.
However, when one looks at what the computer is doing when it executes
all these instructions, we can usually see that the program is looking at
possibilities that it shouldn’t.
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13.2 Search



Chapter 14

A PLAN (NON-LINEAR)
FOR HUMAN-LEVEL AI

In previous chapters we discussed theories of actions and change (using sit-
uation calculus), nonmonotonic reasoning, concepts as objects, contexts as
objects, heuristic search, and theories with approximate objects.

How can we put all these topics into a plan for achieving human-level
logical AI?

Acting intelligently involves problem solving, i.e. finding an x such that
P (x). We can generalize this to finding x1, . . . , xn such that P (x1, . . . , xn),
but this can be considered only superficially more general, because a single
x can be a compound object.

We can formalize this a bit more by writing Find(x, P (x)) as the name
of a problem. (or Find(x1, . . . , xn, P (x1, . . . , xn))) as the name of a problem-
solving task.

The most important x to find is a strategy of action to achieve a goal.
Thus we have Find(strat, Achieves(strat, g)). In general a strategy has con-
ditionals, loops and recursion, but almost all AI research has concentrated on
the most straightforward case of finding a sequence of actions that achieves
the goal g from an initial situation S0. Thus we have

Find(a1, . . . , an, g(Result(an, . . . Result(a1, S0) . . .)))

as the typical problem. In general the situation has mental components, e.g.
knowledge, as well as the physical components. Thus the some of the actions
may be mental actions, e.g. observing or inferring, affecting the mental
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component of the situation. Therefore, we need to plan mental actions,
probably using a mental situation calculus or situation calculus with mental
components.

Mental state includes beliefs and other intentional entities.

14.1 Creativity

Making computers creative is a part of achieving advanced human-level AI. I
say “advanced”, because no-one is creative most of the time, and some quite
effective people seem not to be creative at all. One of the most commonly
held intuitions that AI is impossible comes from a feeling that machines are
intrinsically uncreative.

What is creativity?

I begin by restricting the inquiry to intellectual creativity, because I don’t
have enough intuition for artistic creativity to form an opinion about it.
Maybe it involves the same mechanisms, and maybe it doesn’t.

What is intellectual creativity?

We don’t give credit for creativity to someone who starts from a previously
known goal and works backwards by means-ends analysis to a sequence of
steps that achieves the goal. Note that selecting a particular goal may involve
creativity.

Creativity requires coming up with a new idea—one that is apparently not
apparent in the statement of the problem. I say “apparently not apparent”,
because we can imagine that some apparently unapparent ideas are really
apparent from a routine act of putting the problem into a somewhat larger
context. I know this is a bit vague, but I hope that the examples to be given
will make it clearer.

Creativity is a hard problem, but we can chip off a part of it.

We ask:

What is a creative solution to a problem?

Now we are talking about a creative solution and no longer about a cre-
ative person or program.

A creative solution involves introducing entities not present in the lan-
guage required to state the problem.

Example: the mutilated checkerboard problem.

Remark:
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Different human intellectual capabilities involve different mechanisms.
Presumably the highest capabilities involve them all.1

Maybe there is a distinction between ordinary human level intelligence
and high human intelligence. Perhaps ordinary intelligence does not involve
significant use of introspection.

Does human level logical AI (hllai) require contexts as objects? On one
hand, people switch contexts or use the appropriate context without such
machinery. On the other hand, people speak of contexts as objects when
convenient. Perhaps contexts as objects are only a special case of reification,
i.e. all sorts of entities are treated as objects when convenient. What sorts
of entities?

Does hllai require concepts as objects?
Do any other animals than humans use goal stacks in the solution of

particular problems? In order to do A I must do B first; in order to B I must
do C first; in order to do C I must do D first.

What’s the role of reification? What is this thing called love?
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Chapter 15

Miscellaneous

Most of the stuff here will go in the book somewhere. I’m keeping it in the
text, so it will appear in my proof copies. If I give you a copy, you may read
this chapter, but don’t expect it to make sense.

15.1 Embedding science in situation calculus

Example: The operation of an automobile engine can be describe in situ-
ation calculus. Indeed the informal description in a high school or college
course discusses sequences of events and their causal relations. However, the
description doesn’t take the form of a sitcalc problem solver where there is
a goal to be achieved. One is not interested in a specific initial situation
S0 and a goal situation. The interest is in describing the causal relation of
an arbitrary process in a certain class of processes, in way that permits this
process to operate concurrently with other processes.

Axiomatizing the IC engine in sitcalc should have the following features.

15.2 Generality

A situation calculus formalism that can express what people know about sit-
uations, narratives, general laws and events must have at least the following
capabilities.

Big concurrency
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15.3 projects

1. What is the simplest system that can genuinely be said to exhibit under-
standing of some class of phenomena?

2. What is the simplest case of learning about hidden entities, about
structured entities?

15.4 Polemics

In this chapter we present arguments for some statements made rather baldly
earlier and argue with other points at view. At present the section consists
of squibs that are later to be developed systematically or deleted.

Here are some assumptions often made, usually without explicit notice of
their limitations.

concept as a boolean combination An old book (Jerome S. Bruner 1956)
defines a concept as a boolean combination of elementary concepts and
interprets experiments in which subjects learned such concepts. Since
most human concepts do not have this form, this theory was a Pro-
crustean bed. Unfortunately, most machine learning research described
in (Mitchell 1997) makes the same assumption.

15.4.1 Remarks on Psychology

People are very bad in observing their own reasoning, even when the premises
and results of the reasoning are directly observable. Every chess player uses
the alpha-beta heuristic in his own play. Yet the early designers of chess
programs didn’t notice this fact. Recent discoveries about how to handle
domain constraints also correspond to observable, but often not observed,
mental processes.

People may not be quite as bad logicians as the experiments in which
people accept fallacies indicate. When a person makes a logical mistake, he
may nevertheless accept correction from another person who points out the
mistake. There need to be experiments about the extent to which people



15.4. POLEMICS 193

who make logical mistakes are corrigible with regard to the mistake made on
the specific occasion. Perhaps people are generally corrigible, and perhaps
they will resist attempts at correction. If people are corrigible, it shows that
in some sense they do know logic.

Moreover, much of the reasoning people do is nonmonotonic. They will
even do their customary nonmonotonic reasoning when more careful thought
would tell them that the question they are asked has a definite answer. Some-
one should study human nonmonotonic reasoning experimentally.

Can a system learn or even be told about a lemon as a natural kind having
many properties beyond those used to identify it.

Arthur R. Jensen (Jensen 1998), a leading researcher in human intelli-
gence, suggests “as a heuristic hypothesis” that all normal humans have the
same intellectual mechanisms and that differences in intelligence are related
to “quantitative biochemical and physiological conditions”. I see them as
speed, short term memory, and the ability to form accurate and retrievable
long term memories.

Whether or not Jensen is right about human intelligence, the situation in
AI is the reverse.

Computer programs have plenty of speed and memory but their abilities
correspond to the intellectual mechanisms that program designers understand
well enough to put in programs. Some abilities that children normally don’t
develop till they are teenagers may be in, and some abilities possessed by
two year olds are still out. The matter is further complicated by the fact
that the cognitive sciences still have not succeeded in determining exactly
what the human abilities are. Very likely the organization of the intellectual
mechanisms for AI can usefully be different from that in people.

Whenever people do better than computers on some task or computers
use a lot of computation to do as well as people, this demonstrates that the
program designers lack understanding of the intellectual mechanisms required
to do the task.

Will an artificial system of human-level intelligence report qualia? I think
it would report something similar, e.g. an abstraction of seeing red apart from
seeing a red object, but I can’t prove it.

Q. Are you claiming that logical AI corresponds to how people think?
A. No. Mathematical logic doesn’t correspond well to the reasoning peo-

ple actually do. It is rather a corrected version of what people do. It corre-
sponds better to what people will accept after argument.

Logical AI is intended an improved version of what people do, taking
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into account the need for nonmonotonic reasoning, reasoning within ccntexts
and relating contexts, and reasoning with approximate entities. However, we
don’t yet know how people reason, i.e we don’t yet know what we might be
hoping to improve.

15.5 What AI can get from philosophy

Philosophers have done a lot of research in trying understand many ideas. A
little of this work is immediately relevant to AI. More will be relevant when
AI advances further. However, a lot of the research is unlikely to be useful,
because AI systems will solve the problems in a different way.

We illustrate this using the idea of definite descriptions.

15.5.1 Definite descriptions

Definite descriptions were discussed by Frege, but the logical notation is due
to Russell.

(ιx)φ(x) denotes the unique x satisfying φ(x). In English, it may be read,
“The x such that φ(x). 1

Robots will need to use definite descriptions, and not just in communica-
tions with humans and with other robots.

Robots can use definite descriptions even when they are not intended for
communication and reside in its private knowledge base. Suppose it decides,
“I’ll go climb the tallest tree in the grove, but to get to the grove, it will be
necessary to go out of sight of the tree.”

There is an extensive philosophical literature about definite descriptions.
The philosophers pretty much agree about the interpretation of (ιx)φ(x)
when there is a unique x satisfying φ, although there are some odd cases.

Here are some of the philosophical examples. They all refer to communi-
cation.

1The literature I have seen about definite descriptions is based on English usage of
the particle “the”. However, the Russian language, like Latin, does not have a definite
article. Normally whether a description refers to a definite object is determined by context.
However, circumlocutions are used when the context is inadequate.

Vladimir Lifschitz gave me example of elaboration of Russian sentence to make a de-
scription definite. “Kniga lezhit na tom stolye, kotorii stoyit v uglu.” for “The book is on
the table in the corner.” The Russian amounts to “The book is on that table, which is in
the corner.” The definiteness of “corner” still comes from context.
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1. Keith Donellan distinguishes between attributive and referential uses
of definite descriptions. The example is “The murderer must be in-
sane” uttered on two kinds of occasions. The first is that on learning of
the murder, the speaker uses the sentence to assert that, whoever the
murderer is, he must be insane. The second is that on seeing Jones act-
ing up in court and thinking Jones to be the murderer, the description
“the murderer” is used to refer to the person before him. The speaker
is making an assertion about the person before him that he would still
avow even if it turned out that this person were not the murderer.

2. Saul Kripke uses “The man over there drinking champagne is happy”,
and the hearer agrees. Unbeknownst to them, the man they see is
not drinking champagne but pure water, and another man over there
whom they don’t see is drinking champagne and is unhappy. The two
have agreed about the man they see and misdescribe. The philosophers
therefore see the need to distinguish between what the phrase, e.g. “the
man over there drinking champagne” means and what the speakers
mean by it.

The above comments are not intended to do justice to 145 pages of phi-
losophy reprinted in (Garfield and Kiteley 1991)—only to illustrate a few of
the phenomena that have been studied.

Which of them are important for AI—now and in the future?
Donellan’s distinction may come up in the activity of a logical robot, but

it should not be built into the formalism. Instead the mechanisms for dealing
with ambiguity tolerance via approximate entities should be able to handle
the distinction on an ad hoc basis if it comes up. The same consideration
applies to Kripke’s example.

Robots will mainly need the straightforward use of definite descriptions.

15.6 The Road to Human-Level Logical AI

Reaching human-level AI requires solving many problems. The problems are
somewhat different for logic oriented approaches and biologically oriented
approaches.

The biological approach is straightforward. If only we understood the
physiology of the human brain well enough, we might hope to imitate it.
There are conceptual difficulties, but the main difficulty is experimental.
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Present technology cannot observe brains in action well enough. The tech-
nological difficulties may be overcome, and the biological approach to AI
may succeed. The conceptual difficulties show up in the inadequacy of AI
approaches based on neural nets and connectionist systems. We will discuss
them somewhat in Chapter 16.2.

The logical approach is based on understanding the problems the world
presents to intelligence and devising reasoning methods that can solve the
problems at least as well as people do.

We propose to use the following tools.

representation of facts by logical formulas

logical deduction

nonmonotonic logical inference

theories including approximate entities

contexts as objects

The information situation of a person (or robot) in the world is more
complex than just believing a theory in a logical language in at least the
following respects.

At any moment, thinking, observing and acting is within a certain limited
context. What is immediately meaningful is determined by that context.
For logical AI this requires associating a language with a context. Within
a context, other contexts may be referred to, and logical AI can do this by
regarding contexts as objects. We use the predicate Ist(c, p) as explained
in chapter ??. We also use operations of entering and exiting contexts to
switch contexts.

Leibniz, Boole, Frege and Peirce all expected the symbolic logic they were
developing to be applicable to the common sense informatic situation2. For
example, Leibniz hoped to replace disputation by calculation. Unfortunately,
deductive mathematical logic is inadequate for reasoning in the CSIS, and
psychologist and others have had little difficulty in showing that much human
reasoning is not in accordance with deduction.3

2Of course, they didn’t use the term, because they didn’t make the distinction between
that and the situation of mathematical reasoning.

3Often they exaggerate the difference; much human reasoning is deductive and math-
ematical logic represents a formalization of that part of human reasoning.
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One reaction to the difficulties is despair and the opinion that something
entirely different is required. There have been many candidates for “some-
thing entirely different”, but they haven’t been even as successful as logic.

There are good reasons not to give up. Deductive logic, as pioneered
by Aristotle and polished off by Gödel’s completeness theorem, has told us
what constitutes a rigorous argument in which the conclusions are guaranteed
when the premises are true. That is a valuable achievement, and we can try
to extend it.

The use of deductive logic has had plenty of success in AI and in computer
science more generally. xxx details this. However, two kinds of limitations
have appeared—expressive limitations and computational limitations.

There are two reactions to the limitations.
The most common reaction to the expressive limitations is to live with

them and work on problems where they don’t show themselves. This allows
many applications, even if it won’t lead to human-level AI.

The computational limitations are taken more seriously. There is a sub-
stantial theory of computational complexity. I think this theory is misleading.

The theory of computational complexity and the theory of computability
are misleading when applied to AI.

15.6.1 Hard problems of AI

Three dimensional objects

Natural languages seem to lack names for textures that are analogous to the
names for colors. They might be useful for robots and maybe even for people.
Suppose we want to tell a person or robot how to pick an object of a kind
unknown to that agent out of a pocket. If we had names for textures we could
tell him the texture of various surfaces. Thus the texture of a surface of an
object could be observed by one person and its name giveqq, and another
person could use the name to find the designated surface.

15.7 Essays in AI

The main part of this book presents formalisms intended for use by reasoning
programs. This chapter presents considerations relevant to human-level AI
that are not presently in shape to be fully formalized. It would be nice if
this chapter were considerably shorter.
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15.7.1 Notes on the evolution of intelligence

Primitive animals react rather directly to stimuli in the environment com-
bined with internal stimuli, e.g. whether the animal is hungry. For example,
a frog sticks out its tongue to catch small black objects, which might be flies.
A person swatting flies will distinguish them from other small dark objects.
(I don’t know if a frog put in an environment with both flies and small bad
tasting black disks would learn to distinguish them. Maybe flies already
know how to distinguish flies from wasps and poisonous spiders. Some of
that could have been learned by evolution.)

However, the frog’s S-R response to flies evolved in a world in which flies
are three-dimensional objects. Therefore it may be more sophisticated than
the learning theorists’ 2-d world.

15.7.2 Remarks

Much research, some of it quite good, might be banished from AI proper.
Here’s the criterion for banishing a topic. Human-level AI can be reached
without the topic, and a human-level AI program could then read a 1990s
book about the topic and use it where applicable. An example, which only
a few would include in AI, is linear programming. A human-level program
could read a book about it and write programs to optimize the product mix
of oil refineries.

Most work on algorithms for machine learning is likely to fare similarly.
This is a snide remark that needs to be justified or omitted.

The step from chimpanzee intelligence to human intelligence is probably
a short one. Candidates are speech, episodic memory and the ability to form
concepts using episodic memory. The question is important for AI; at least
it would help if research in chimpanzee intelligence found out more about the
difference. Maybe also goal stack.

Why was GPS (General Problem Solver) inadequate?
The AI industry: expert systems.

15.7.3 Philosophical remarks

While some philosophical attitudes seem important for the development of
AI, AI research suggests some philosophical ideas not directly required for
AI science.
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In the past, science has substantially influenced philosophy. Here’s an-
other shot at it. Suppose we believe that human intelligence is a product
of evolution, and perhaps we are interested in a theory of the evolution of
intelligence within causal systems, i.e. some subsystems develop intelligence.
It is unlikely to be a theorem of this theory that all aspects of the world,
i.e. the system as a whole, are definable or even discoverable in terms of the
experience of the intelligent subsystem. Some aspects of the world may be
undiscoverable.

We regard this scientific or mathematical proposition as a refutation of
the philosophical proposition (or dogma) that a statement about the world
is meaningful only if it is potentially testable.

15.8 Notes on logic chapter, in response to

Pat Hayes

I am not decided which of them to put in the chapter. Some of it probably
should go elsewhere in the book.

A logical robot decides what to do by reasoning logically that a certain
action will advance its goals. //As I think Ive said elsewhere, theres a central
snag in this idea, which is that reasoning is itself doing something. So if we
take this statement at face value and literally, then the logical robot can’t
ever get started, since it first has to decide what reasoning to do...//

This requires a collection of sentences from which what to do can be
inferred and a program to do the inferences. We must decide what part of
the intelligence to put in the sentences and what part to put in the program.

There are two extreme cases

• Put everything in the program. Many AI systems have this character.

• Begin with a minimal program, and put everything, including a de-
scription of the program, in the sentences.

The bias of this book is toward beginning with a minimal program. The
initial program has three capabilities.

• It forward chains from sentences in its database.
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• When it infers a sentences saying that it should perform an action, it
does the action.

• Some of the actions it can perform add to or modify the program.

Besides its knowledge of outside world, the knowledge base includes the
following.

• A description of the program.

• Facts enabling reasoning about what the program will do in some class
of situations. This must include a description of the programming
language.

• Facts about modifying the program.

Advantages of Imperative Sentences

1. A procedure described in imperatives is already laid out and is carried
out faster.

2. One starts with a machine in a basic state and does not assume previous
knowledge on the part of the machine.

Advantages of Declarative Sentences

1. Advantage can be taken of previous knowledge.

2. Declarative sentences have logical consequences and it can be arranged
that the machine will have available sufficiently simple logical conse-
quences of what it is told and what it previously knew.

3. The meaning of declaratives is much less dependent on their order
than is the case with imperatives. This makes it easier to have after-
thoughts.

4. The effect of a declarative is less dependent on the previous state of
the system so that less knowledge of this state is required on the part
of the instructor.
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15.9 Temporary Notes

These are just stuff that will go in somewhere.
Topics: introduction, philosophical premises, logic and set theory, non-

monotonic reasoning, situation calculus, elaboration tolerance, approximate
objects, control of reasoning, connection to lower level processes, contexts,
concepts as objects, counterfactual reasoning, reasoning about space, vision
and hearing, speech recognition, recommendations for AI research, AI as
science and AI as engineering, concepts of logical AI fits in somewhere, op-
portunities for society, goals of robots, plan to reach human-level logical AI,
computability and computational complexity, criticisms and off-hand opin-
ions, appearance and reality, ontology, creativity and creative ideas, squibs,
unsolved problems, logic level

Human universals vs. world universals
Chapters: intro, mechanisms and structures of intelligence, logic (includ-

ing nmr, contexts, approximate objects, reified concepts, counterfactuals,
elaboration tolerance), basic situation calculus, heuristics (including plan-
ning), robots in the world, mental qualities, essays (philosophical basis, learn-
ing, pruning AI)

The causality cone, maybe inferential cone, so as to be logical and not
just temporal. Backwards and forwards. Conceptually it is like the light
cone, but what is outside it is inferred by default. The default is that events
in one story do not affect events in another. Maybe it isn’t a precise analogy,
because the default is for each event in the other place. Even when we do
have Daddy and Junior interacting, Junior’s purchase of a new ticket doesn’t
affect Daddy’s blocks.

Other work: Lifschitz, Reiter, Levesque, Lin, Shanahan, Costello, Sierra,
Poole, Baker, Shoham, Etherington, Moore, Konolige, Saša Buvač Denecker
et al.

Hypotheses:
One of those sheep out there is a wolf in sheep’s clothing. That explains

the loss of a sheep, but I don’t presently know how to tell which one is the
wolf.

Consider the hypothesis that one of those sheep is not what it seems to
be.

Any kind of spying involves going from appearance to phenomena.
1. estimating quantity from a few observed serial numbers.
2. inferences about units from aerial photos of tank tracks
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The evidence from the test suggests that the student does not understand
about disguised quadratic equations.

There were three chairs at the table and three bowls of porridge.
Other people’s likes and dislikes may be inferred concepts—although they

may be innate.
Tue Aug 4 11:40:25 1998 What generality is possible? Consider

1. Unsupported objects fall.

2. When an object moves it is no longer where it was previously. On the
other hand information can be transferred without the source forgetting
it.

3. Objects placed on a flat horizontal surface stay there.

Locations of objects and occupants of places are dual notions. A good
formalism will have both, accepting the fact that when one is changed, the
other has to be updated.

/u/jmc/f94/reactive.tex The Garden Path from Reaction to Planning
Loves(A,B), the love of A for B is greater than the love of C for D. for

every boy there is a girl who loves only him.

(∀x)(Boy(x) → (∃y)(Girl(y)∧Loves(y, x)∧(∀z)(Loves(y, z) → z = x)))(15.1)

(∀boy)(∃girl)(Loves-Only(girl, boy))) (15.2)

If Pat knows Mike’s telephone number he can dial it. If Pat asks, “What
is Mike’s telephone number?” and is answered responsively, he will then
know the number.



Chapter 16

POLEMICS

16.1 Opponents of AI

16.1.1 AI is impossible in principle

The too simple counterexample

Quine’s doctrine of “the indeterminacy of radical translation” relies on overly
simple counterexamples.

Consider the cryptogram XYZ in a simple substitution cipher. XYZ
could stand for “dog” and equally well for “cat”. However, when a simple
subsitution cryptogram passes 21 letters in length, its interpretation will
almost always be unique. In cryptography 21 letters is the unicity distance
of English language simple substitution ciphers.

In an article in Scientiic American, John Searle writes that the dialog of
the “Chinese room” could equally well be the score of a chess game or an
article predicting the stock market. This is mistaken for dialogs of reason-
able length; 100 characters should suffice for Chinese dialogs, chess scores or
articles about the stock market. A rule for translating Chinese dialogs into
either of these would be long and would consume inordinate computer time.
I don’t have a precise statement of a conjectured theorem.

If we order the Chinese dialogs and the chess scores, we can make a one-
one-correspondence. However, both languages have compositional structure,
so extremely probably there is no 1-1 correspondence that preserves struc-
ture. Maybe even the Markov structures cannot be matched.

What is the simplest task you think computers cannot be programmed

203
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to do?

16.1.2 Opponents of logical AI

16.1.3 Those who think computer speed will do it

Moravec, Kurzweil
/u/jmc/w99/miscellaneous.tex=476

16.2 Polemics

In this chapter we present arguments for some statements made rather baldly
earlier and argue with other points at view. At present the section consists
of squibs that are later to be developed systematically or deleted.

Here are some assumptions often made, usually without explicit notice of
their limitations.

Inadequate paradigms for AI
Each of the following paradigms dominating fields of AI research must be

transcended in order to reach human level AI.

concept as a boolean combination An old book (Jerome S. Bruner 1956)
defines a concept as a boolean combination of elementary concepts and
interprets experiments in which subjects learned such concepts. Since
most human concepts do not have this form, this theory was a Pro-
crustean bed. Unfortunately, most machine learning research described
in (Mitchell 1997) makes the same assumption.

present concepts of machine learning

unary ontology It is usual in AI discussions of ontology to only use unary
predicates as elements in the ontology. Relations among the elements
are discussed, but relations themselves are not elements. Thus child
and parent are elements, but the relation parent(x, y) is not an ele-
ment. Philsophers, starting with Aristotle but must emphatically Leib-
niz, make the same mistake. (?) discusses Leibniz’s mistake in denying
relations.

evolution of trivial systems
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theorem provers not allowing domain dependent heuristics

limited notions of planning

Markov models

make it like physics

it must model neurology

Each bad paradigm needs an exemplifying quotation. Maybe each should
be a separate article if the arguments are to have maximum effect. Each
also needs a problem it won’t solve that is in the domain the paradigm is
advertised to solve. The killer would be the simplest example of a program
solving one of the problems beyond the paradigm.

These paradigms are really mini-paradigms, i.e. not as grand scientific so-
ciological phenomena as Thomas Kuhn postulated. Nevertheless, a paradigm
with hundreds of papers, several journals and many books in which the
paradigm is explicitly presumed to define the problem of e.g. learning or
evolution or planning, is worthy of calling at least a mini-paradigm and
worth criticizing from the outside.

Arguments against AI

meat machine

argument against AI from Gödel’s theorem

argument from practice, Dreyfusses

The immorality of AI is occasionally argued, e.g. by Weizenbaum and
by Joy. However, we haven’t suffered from the intensity of ignorant and
fanatical attacks like those levelled at nuclear energy and genetic engineering.
Therefore, this book ignores this kind of criticism in the hope that it won’t
amount to much until human level AI is a lot closer.
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Working index
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